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Preface

These notes should, ideally, be read before the Guanajuato meeting
starts. They are intended to give background material in mathemat-
ical population genetics and also, in part, to form the background
for some of the material given by other lecturers. At the very least,
the first approximately 30 pages should be read before the meeting.

The notes are abstracted from Ewens (2004) Mathematical Pop-
ulation Genetics, from which further details not covered in these
notes may be found.

Some standard genetical terms will be used and it is assumed that
the reader is familiar with the meanings of these. These terms in-
clude gene, genotype, allele, (gene) locus, haploid, diploid, homozy-
gote, heterozygote, heterozygosity, monoecious, dioecious, linkage,
polymorphism and recombination.

Even if one is primarily a mathematician, one should not do
mathematical population genetics in isolation. It should be con-
sidered as part of science, particularly (of course) of genetics and
more recently genomics, and the relevance of mathematical popu-
lation genetics to evolution, medicine, and other scientific activities
should always be kept in mind. For this reason these notes start
with a brief historical sketch and remarks about the beginnings of
population genetics theory.

The historical background

Darwin and after

Although these notes describe stochastic processes in evolutionary
genetics, it is appropriate to start with a brief summary of the his-
torical background, and then the describe briefly the non-stochastic,
or deterministic, theory of introductory population genetics.

The Origin of Species was published in 1859. Apart from the
controversies it brought about on a nonscientific level, it set biolo-
gists at odds as to various aspects of the theory. That evolution had
occurred was not, on the whole, questioned. What was more contro-
versial was the claim that the agency bringing about evolution was
natural selection, and, among selectionists, there was disagreement
about the the nature of a selectively induced evolutionary changes.
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These difficulties arose mainly because the nature of the heredi-
tary mechanism was not generally, known, since Mendel’s work, and
hence the mechanism of heredity, was in effect unknown before 1900.

In so far as a common view of heredity existed at the time, it
would have been that the characteristics of an individual are, or
tend to be, a blending of the corresponding characteristics of his
parents. The blending hypothesis brought perhaps the most sub-
stantial scientific objection to Darwin’s theory. It is easy to see that
with random mating, the variance in a population for any character-
istic will, under the blending theory, decrease by a factor of one-half
in each generation. Thus uniformity of characteristics would es-
sentially be obtained after a few generations, so that eventually no
variation would exist upon which natural selection could act. Since,
of course, such uniformity is not observed, this argument is incom-
plete. But since variation of the degree observed could only occur by
postulating further factors of strong effect which cause the charac-
teristics of offspring to deviate from those of their parents, it cannot
then be reasonably argued that selectively favored parents produce
offspring who closely resemble them and who are thus themselves
selectively favored. This argument was recognized by Darwin as a
major obstacle to his theory of evolution through natural selection,
and it is interesting to note that later versions of the Origin were,
unfortunately, somewhat influenced by this argument.

The year 1900 saw the rediscovery of Mendelism. The particulate
nature of this theory was of course appealing to the saltationists.
Rather soon many biologists believed in a non-Darwinian process
of evolution through mutational jumps – the view that “Mendelism
had destroyed Darwinism” was not uncommon. On the other hand,
the biometricians continued to believe in the Darwinian theory of
gradualist evolution through natural selection and were thus, in the
main, disinclined to believe in the Mendelian mechanism, or at least
that this mechanism was of fundamental importance in evolution.

Given the above, it is therefore paradoxical that in actual fact,
not only are Darwinism and Mendelism compatible, the Darwinian
theory relies crucially on the Mendelian mechanism. Further, it
would be difficult to conceive of a Mendelian system without some
form of natural selection associated with it. To see why this should
be so, it is now necessary to turn to the beginnings of the mathe-
matical theory of population genetics.
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The Hardy–Weinberg law

We consider a random-mating monoecious population (that is, a
population with no concept of two separate sexes) which is so large
that genotype frequency changes may be treated as deterministic,
and focus attention on a given gene locus at which two alleles may
occur, namely A1 and A2. Suppose that in any generation the pro-
portions of the three genotypes A1A1, A1A2 and A2A2 are u, 2v,
and w, respectively. Since random mating obtains, the frequency
of matings of the type A1A1 × A1A1 is u2, that of A1A1 × A1A2

is 4uv, and so on. If there is no mutation and no fitness differen-
tials between genotypes, elementary Mendelian rules indicate that
the outcome of an A1A1 × A1A1 mating must be A1A1 and that
in an indefinitely large population, half the A1A1 × A1A2 matings
will produce A1A1 offspring, and the other half will produce A1A2

offspring, with similar results for the remaining matings.
It follows that since A1A1 offspring can be obtained only from

A1A1 × A1A1 matings (with overall frequency 1 for such matings),
from A1A1 ×A1A2 matings (with overall frequency 1

2
for such mat-

ings), and from A1A2 × A1A2 matings (with frequency 1
4

for such
matings), and since the frequencies of these matings are u2, 4uv,
4v2, the frequency u′ of A1A1 in the following generation is

u′ = u2 + 1
2
(4uv) + 1

4
(4v2) = (u+ v)2. (1)

Similar considerations give the frequencies 2v′ of A1A2 and w′ of
A2A2 as

2v′ = 1
2
(4uv) + 1

2
(4v2) + 2uw + 1

2
(4vw) = 2(u+ v)(v + w), (2)

w′ = 1
4
(4v2) + 1

2
(4vw) + w2 = (v + w)2. (3)

The frequencies u′′, 2v′′ and w′′ for the next generation are found
by replacing u′, 2v′ and w′, by u′′, 2v′′ and w′′ and u, 2v and w by
u′, 2v′ and w′ in (1)–(3). Thus, for example, using (1) and (2),

u′′ = (u′ + v′)2

= (u+ v)2

= u′,

and similarly it is found that v′′ = v′, w′′ = w′. Thus, the genotype
frequencies established by the second generation are maintained in
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the third generation and consequently in all subsequent generations.
Frequencies having this property can be characterized as those sat-
isfying the relation

(v′)2 = u′w′. (4)

Clearly if this relation holds in the first generation, so that

v2 = uw, (5)

then not only would there be no change in genotypic frequencies
between the second and subsequent generations, but also these fre-
quencies would be the same as those in the first generation. Popu-
lations for which (5) is true are said to have genotypic frequencies
in Hardy–Weinberg form.

Since u + 2v + w = 1, only two of the frequencies u, 2v and w
are independent. If, further, (5) holds, only one frequency is inde-
pendent. Examination of the recurrence relations (1)-(3) shows that
the most convenient quantity for independent consideration is the
frequency x = u + v of the allele A1. These conclusions may be
summarized in the form of a theorem:

Theorem (Hardy–Weinberg). Under the assumptions stated, a pop-
ulation having genotypic frequencies u (of A1A1), 2v (of A1A2) and
w (of A2A2) achieves, after one generation of random mating, stable
genotypic frequencies x2, 2x(1 − x), (1 − x)2 where x = u + v and
1− x = v + w. If the initial frequencies u, 2v, w are already of the
form x2, 2x(1−x), (1−x)2, then these frequencies are stable for all
generations.

The important consequence of this theorem lies in the stability
behavior. If no external forces act, there is no intrinsic tendency for
any variation present in the population, that is, variation caused by
the existence of the three different genotypes, to disappear. This
shows immediately that the major earlier criticism of Darwinism,
namely the fact that variation decreases rapidly under the blend-
ing theory, does not apply with Mendelian inheritance. It is clear
directly from the Hardy–Weinberg Law that under a Mendelian sys-
tem of inheritance, variation tends to be maintained.



6

The deterministic theory of natural selection

The twin cornerstones of the Darwinian theory of evolution are vari-
ation and natural selection. Since the different genotypes in a popu-
lation will often have different fitnesses, that is will differ in viability,
mating success, and fertility, natural selection will occur. We now
outline the work done during the 1920s and 1930s in this direction.
This quantification amounts to a scientific description of the Dar-
winian theory in Mendelian terms.

It is necessary, at least as a first step, to make a number of
assumptions and approximations about the evolutionary process.
Thus although mutation is essential for evolution, mutation rates
are normally so small that for certain specific problems we may
ignore mutational events. Further, although the fitness of an indi-
vidual is determined in a complex way by his entire genetic make-up,
and even then will often differ from one environment to another, we
start by assuming as a first approximation that this fitness depends
on his genotype at a single locus, or at least can be found by “sum-
ming” single locus contributions to fitness. It is also difficult to cope
with that component of fitness which relates to fertility, and almost
always special assumptions are made about this. If fitness relates
solely to viability then much of the complexity is removed, and for
convenience we make this assumption in these notes.

Suppose then that the fitnesses and the frequencies of the three
genotypes A1A1, A1A2, and A2A2 at a certain locus “A” are as given
below:

A1A1 A1A2 A2A2

fitness w11 w12 w22

frequency x2 2x(1− x) (1− x)2

(6)

We have written the frequencies of these genotypes in the Hardy–
Weinberg form appropriate to random mating. Now Hardy–Weinberg
frequencies apply only at the moment conception, since from that
time on differential viabilities alter genotype frequencies from the
Hardy–Weinberg form. For this reason we count frequencies in the
population at the moment of conception of each generation.

Clearly the most interesting question to ask is: What is the be-
havior of the frequency x of the allele A1 under natural selection?
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Since we take the fundamental units of the microevolutionary pro-
cess to be the replacement in a population of an “inferior” allele by
a “superior” allele, the answer to this question is essential to an un-
derstanding of the microevolutionary process as directed by natural
selection.

The first step is to find the frequency x′ of A1 in the following
generation. By considering the fitnesses of each individual and all
possible matings, we find that

x′ =
w11x

2 + w12x(1− x)

w11x2 + 2w12x(1− x) + w22(1− x)2
. (7)

Clearly continued iteration of this recurrence relation yields the suc-
cessive values taken by the frequency of A1. Unfortunately simple
explicit expressions for these frequencies are not always available,
and resort must be made to approximation.

Before discussing these approximations, we observe that x′ de-
pends on the ratios of the fitnesses wij rather than the absolute
values, so that x′ is unchanged if we multiply each wij by any con-
venient scaling constant. It is therefore possible to scale the wij in
any way convenient to the analysis at hand. Different scalings are
more convenient for different purposes. We indicate below (in (8),
(9) and (10)) three alternative representations of the fitness values;
on different occasions different representations might prove to be
the most useful. It should be emphasized that nothing is involved
here other than convenience of notation.

Fitness Values
A1A1 A1A2 A2A2

w11 w12 w22 (8)
1 + s 1 + sh 1 (9)
1− s1 1 1− s2 (10)

We normally assume that except in extreme cases, perhaps involving
lethality, the fitness differentials s, sh, s1 and s2 are small, perhaps
of the order of 1%. In this case we ignore small-order terms in these
parameters.

In the form (9), that parameter h is called a “dominance” pa-
rameter, and the value h = 1/2 corresponds to the case of no dom-
inance, where the fitness of A1A2 is half-way between that of A1A1

and A2A2.



8

Using the fitness scheme (9), the recurrence relation (7) leads, to
a sufficiently close approximation, to

x′ − x = sx(1− x){x+ h(1− 2x)}. (11)

If we measure time in units of one generation, this equation may be
approximated, in turn, by

dx/dt = sx(1− x){x+ h(1− 2x)}. (12)

If the time required for the frequency of A1 to move from some value
x1 to some other value x2 is denoted by t(x1, x2), then clearly

t(x1, x2) =

x2∫
x1

(
sx(1− x){x+ h(1− 2x)}

)−1
dx. (13)

Naturally this equation applies only in cases where, starting from
x1, the frequency of A1 will eventually reach x2.

While an explicit expression for t(x1, x2) is possible, it is usually
more convenient to use the expression (13) directly. Suppose first
that s > sh > 0. Then it is clear from (12) that the frequency
of A1 steadily increases towards unity. However, as this frequency
approaches unity, the time required for even small changes in it will
be large, due to the small term 1 − x in the denominator of the
integrand in (13). This behavior is even more marked in the case
h = 1 (A1 dominant to A2 in fitness), for then the denominator in
the integrand in (13) contains a multiplicative term (1 − x)2. This
very slow rate of increase is due to the fact that, once x is close to
unity, the frequency of A2A2, the genotype against which selection is
operating, is extremely low. In the important particular case h = 1

2
,

that is no dominance in fitness, (13) assumes the simple form

t(x1, x2) =

x2∫
x1

{
1
2
sx(1− x)

}−1
dx. (14)

It is possible to evaluate the times required for any nominated
changes in the frequency of A1 from (13) and (14). This proce-
dure quantifies, at least approximately, important aspects of the
unit microevolutionary process of the replacement of an “inferior”
allele by a “superior” allele.
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The case where s < sh < 0 is a mirror-image to the case just
considered, and needs no further discussion.

In both cases considered above the fitness of the heterozygote
is intermediate between that of the two homozygotes. When the
heterozygote A1A2 is at a selective advantage over both homozygotes
it is convenient to use the fitness notation (10), where s1 > 0, s2 > 0.
It is easy to see that the population evolves to a stable equilibrium
where the frequency of A1 is s2/(s1 + s2). Thus both A1 and A2

remain forever in the population.
We do not pursue the deterministic theory further in these notes,

since the material above is sufficient for the various stochastic theory
calculations that we shall make later.

The beginnings of population genetics theory

It was thus beginning to become clear, following the derivation of the
Hardy-Weinberg law and the elements of the deterministic theory
of natural selection, that a reconciliation between Darwinism and
Mendelism was not only possible but indeed inevitable. The mar-
riage of these two fields can be said to have produced the subject of
population genetics.

Thee is one important deficiency in the analyses given above: the
population considered is assumed to be infinite in size, so that that
random, or stochastic, changes in gene frequencies are not allowed.
However, all population sizes are, or course, finite, and thus the
stochastic aspect of evolutionary population genetics must be inves-
tigated. This was of course recognized from the earliest times, and
thus the stochastic theory of population genetics is one of the old-
est examples of stochastic processes applied in science. From now
on, these notes focus entirely on stochastic processes in
evolutionary genetics. This implies that large areas of the mod-
ern theory of population genetics, especially “population genomics”,
where the theory is deterministic (because of the complexities of the
entire genome), are not covered.

A remark about notation

Standard notation in probability and statistics is to denote random
variables by upper case notation. Since we consider the stochastic



10

theory in these notes, we attempt so far as possible to use this nota-
tional convention. However, it is not possible to use this convention
all the time, and sometimes upper case notation is used for quanti-
ties that are not random variables. Here are some examples:-

(i) Population sizes are denoted in upper case (for example N),
whereas sample sizes are denoted in lower case (for example n).

(ii) While the number of genes in a stochastic model is denoted in
upper case, the corresponding frequencies, or proportions, are often
denoted in the corresponding lower case.

(iii) To conform with the Markov chain convention of using the sym-
bol pij to denote a transition probability from “i” to “j”, the lower
case notations “i” and “j” are often used to denote the values of
discrete random variables in Markov chain models.

Parameters, in particular θ, are usually denoted in Greek, in accor-
dance with standard statistical notation. However, mutation rates
are denoted in lower case Roman (usually u and v).

The stochastic theory

Finite Markov chains

It is assumed that you are familiar with the basic notions of finite
Markov chains. However, all the stochastic theory considered below
is in terms of finite Markov chains, so a very brief introduction to
the theory of these chains is given in this section.

Consider a discrete random variable X which at time points 0, 1,
2, 3, . . . takes one or other of the values 0, 1, 2, . . . ,M . We shall say
that X, or the system, is in state Ei if X takes the value i. Suppose
that, at some time t, the random variable X is in state Ei. Then
if the probability pij that, at time t + 1, the random variable is in
state Ej is independent of t and also of the states occupied by X at
times t−1, t−2, . . ., the variable X is said to be Markovian, and its
probability laws follow those of a finite Markov chain. If the initial
probability (at t = 0) that X is in Ei is ai then the probability that
X is in the state Ei, Ej, Ek, E`, Em . . . at times 0, 1, 2, 3, 4 . . . is
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apipijpjkpk`p`m . . . .
Complications to Markov chain theory arise if periodicities oc-

cur, for example, if X can return to Ei only at the time points t1,
2t1, 3t1, . . . for t1 > 1. Further minor complications arise if the
states E0, E1, . . . , EM can be broken down into non-communicating
subsets. To avoid unnecessary complications, which never in any
event arise in genetical applications, we suppose that no periodic-
ities exist and that, apart from the possibility of a small number
of absorbing states, (Ei is absorbing if pii = 1), no breakdown into
non-communicating subsets occur.

It is convenient to collect the pij into a matrix P = {pij}, so that

P =


p00 p01 · · · p0M

p01 p11 · · · p1M
...

pM0 pM1 · · · pMM

 . (15)

The probability p
(2)
ij that X is in Ej at time t + 2, given it is in Ei

at time t, is evidently

p
(2)
ij =

∑
k

pikpkj.

Since the right-hand side is the (i, j)th element in the matrix P 2,

and if we write P (2) = {p(2)
ij }, then

P (t) = P t (16)

for t = 2. More generally (16) is true for any positive integer t. In
all cases we consider, P t can be written in the “spectral expansion”
form

P t = λt
0r0`

′
0 + λt

1r1`
′
1 + · · ·+ λt

MrM`
′
M (17)

where λ0, λ1, . . . , λM (|λ0| ≥ |λ1| ≥ · · · ≥ |λM |) are the eigenvalues
of P and (`0, . . . , `M) and (r0, . . . , rM), normalized so that

`′iri =
M∑

j=0

`ijrij = 1, (18)

are the corresponding left and right eigenvectors, respectively.
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Suppose E0 and EM are absorbing states and that no other states
are absorbing. Then λ0 = λ1 = 1 and if |λ2| > |λ3| and i, j =
1, 2, . . . ,M − 1,

p
(t)
ij = r2i`2jλ

t
2 + o(λt

2) (19)

for large t. Thus the leading non-unit eigenvalue λ2 plays an impor-
tant role in determining the rate at which absorption into either E0

and EM occurs.
Let πj be the probability that eventually EM (rather than E0) is

entered, given initially that X is in Ei. By considering values of X
at consecutive time points it is seen that the πi satisfy

πi =
M∑

j=0

pijπj, π0 = 0, πM = 1. (20)

The mean times t̄i until absorption into E0 or EM occurs, given
that X is in Ei, similarly satisfy

t̄i =
M∑

j=0

pij t̄j + 1, t̄0 = t̄M = 0. (21)

Starting with X in Ei the members of the set of mean times {t̄ij}
that X is in Ej before absorption into either E0 or EM satisfy the
equations

t̄ij =
M∑

k=0

pik t̄kj + δij, t̄0j = t̄Mj = 0, (22)

where δij = 1 and i = j and δij = 0 otherwise. Further,

t̄ij =
∞∑

n=0

p
(n)
ij , t̄i =

M−1∑
j=1

t̄ij. (23)

Consider now only those cases for which EM is the absorbing
state eventually entered. Writing Xt for the value of X at time t,
we get

p∗ij = Prob{Xt+1 in Ej | Xt in Ei, EM eventually entered}
= Prob{Xt+1 in Ej and EM eventually entered | Xt in Ei}

÷ Prob{EM eventually entered | Xt in Ei}
= pijπj/πi, (i, j = 1, 2, . . . ,M), (24)
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using conditional probability arguments and the Markovian nature

of X. Let P̃ be the matrix derived from P by omitting the first row
and first column and let

V =


π1

π2

. . . 0
0 πM

 . (25)

Then if P ∗ = {p∗ij}, Eq. (24) shows that

P ∗ = V −1P̃ V. (26)

Standard theory shows that the eigenvalues of P ∗ are identical to
those of P (with one unit eigenvalue omitted) and that if `′(r) is any

left (right) eigenvector of P̃ , then the corresponding left and right
eigenvector of P ∗ are `′V and V −1r. Further, if P ∗(n) is the matrix
of conditional n step transition probabilities,

P ∗(n) = (P ∗)n = V −1P̃ nV

so that

p
∗(n)
ij = p

(n)
ij πj/πi, (27)

a conclusion that can be reached directly as with (24). If t̄∗ij is the
conditional mean time spent in Ej, given initially X in Ei, then

t̄∗ij =
∞∑

n=0

p
∗(n)
ij

= (πj/πi)
∞∑

n=0

p
(n)
ij (28)

= t̄ijπj/πi.

If there is only one absorbing state interest centers solely on prop-
erties of the time until the state is entered. Taking E0 as the only
absorbing state and Ei as the initial state, the mean time ti until
absorption satisfies (21) with the single boundary condition t̄0 = 0,
and the mean number of visits to Ej satisfies (22) with the single
condition t̄0j = 0.



14

If there are no absorbing states P will have a single eigenvalue
and all other eigenvalues will be strictly less than unity in absolute
value. Equation (17) then shows that

lim
t→∞

P t = r0`
′
0 (29)

and since r0 is of the form (1, 1, 1, . . . , 1)′,

lim
t→∞

p
(t)
ij = `0j for all i. (30)

Using a slightly different notation we may summarize this by saying

lim
t→∞

p
(t)
ij = φj, (31)

where φ′ = (φ0, φ1, . . . , φM) is the unique solution of the two equa-
tions

φ′ = φ′P,

M∑
j=0

φj = 1. (32)

The vector φ is called the stationary distribution of the process
and in genetical applications exists only if fixation of any allele is
impossible (e.g. if all alleles mutate at positive rates).

If the matrix P is a continuant (so that pij = 0 if |i − j| > 1)
explicit formulae can be found for most of these quantities. We do
not give these formulae here, but will give examples of them when
considering genetical models involving continuant Markov chains.

We conclude our discussion of finite Markov chains by introducing
the concept of time reversibility. Consider a Markov chain admit-
ting a stationary distribution {φ0, φ1, . . . , φM}. Then we define the
process to be reversible if, at stationarity,

Prob{Xt, Xt+1, . . . , Xt+n} = Prob{Xt, Xt−1, . . . , Xt−n} (33)

for every t and n. A necessary and sufficient condition for this is
that the stationary state has been reached and that the equation

φipij = φjpji (34)

hold for all i, j. Certain classes of Markov chains are always re-
versible. For example, if the transition matrix is a continuant, the
Markov chain at stationarity is reversible. Certain other chains, in
particular several having genetical relevance, are also reversible: we
consider these later when discussing the uses to which the concept
of reversibility can be put.
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The “simple” Wright-Fisher model

It is necessary, in order to arrive at a theoretical estimate of the im-
portance of the stochastic factor, to set up stochastic models which
reasonably describe the behavior of a finite population. Perhaps
more than in any other part of population genetics theory, the choice
of a model is arbitrary, and no-one pretends that Nature necessarily
follows at all closely the models we construct. Although they did
not use the terminology of Markov chain theory, the methods used
by Fisher and Wright, who initiated the theory in the 1920’s, are in
fact those of this theory and its close relative, diffusion theory. Here
we present some of the conclusions of Fisher and Wright, but unlike
them we present these in the terminology of Markov chains.

We consider, as the simplest possible case, a diploid population
of fixed size N . Suppose that the individuals in this population
are monoecious, (that is, there is no concept of two separate sexes),
that no selective difference exist between the two alleles A1 and A2

possible at a certain locus “A,” and that there is no mutation. There
are 2N genes in the population in any generation, and it is sufficient
to center our attention on the number X of A1 genes. Clearly in
any generation X takes one or other of the values 0, 1, . . . , 2N , and
we denote the value assumed by X in generation t by X(t).

We must now assume some specific model which describes the
way in which the genes in generation t + 1 are derived from the
genes in generation t. Clearly many reasonable models are possi-
ble and, for different purposes, different models might be prefer-
able. Naturally, biological reality should be the main criterion in
our choice of model, but it is inevitable that we consider mathemat-
ical convenience in this choice. The Markov chain model discussed
below, although it was not written down explicitly by Fisher and
Wright, was clearly in effect known to them both, since they both
gave several formulas deriving from it.

The model assumes that the genes in generation t+1 are derived
by sampling with replacement from the genes of generation t. This
means that the number X(t+1) of A1 genes in generation t+1 is a
binomial random variable with index 2N and parameter X(t)/2N .
More explicitly, the model assumes that, given that X(t) = i, the
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probability pij that X(t+ 1) = j is given by

pij =

(
2N

j

)
(i/2N)j{1−(i/2N)}2N−j, i, j = 0, 1, 2, . . . , 2N. (35)

More precisely, we refer to the model (35) as the “simple” Wright–
Fisher model, since it does not incorporate selection, mutation, pop-
ulation subdivision, two sexes or any other complicating feature.
The purpose of introducing it is to allow an initial examination
of the effects of stochastic variation in gene frequencies, without
any further complicating features being involved. More complicated
models that introduce factors such as selection and mutation, and
which allow more than two alleles, but which share the binomial
sampling characteristic of (35), will all be referred to generically as
“Wright–Fisher” models. We emphasize that all of these models are
no more than crude approximations to biological reality.

In the form of (35), it is clear that X(·) is a Markovian random
variable with transition matrix P = {pij}, so that in principle the
entire probability behavior of X(·) can be arrived at through knowl-
edge of P and the initial valueX(0) ofX. In practice, unfortunately,
the matrix P does not lend itself readily to simple explicit answers to
many of the questions we would like to ask, and we shall be forced,
later, to consider alternative approaches to these questions.

On the other hand, (35) does enable us to make some comments
more of less immediately. Perhaps the most important is that what-
ever the value X(0), eventually X(·) will take either the value 0
or 2N , and once this happens there will be no further change in
the value of X(·). We refer to this as fixation (of A2 and A1 re-
spectively). Genetically this corresponds, of course, to the fact that
since the model (35) does not allow mutation, once the population
is purely A2A2 or purely A1A1, no variation exists, and no further
evolution is possible at this locus. It was therefore natural for both
Fisher and Wright to find, assuming the model (35), the probability
of eventual fixation of A1 rather than A2, and perhaps more impor-
tant, to attempt to find how much time might be expected to pass
before fixation of one or other allele occurs.

The answer to the first question is X(0)/2N. This conclusion may
be arrived at by a variety of methods, the one most appropriate to
Markov chain theory being that if the probability of fixation of A1,
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given that currently X(·) = i, is denoted πi, then the choice

πi = i/(2N) (36)

satisfies the standard Markov chain fixation probability difference
equations (20), together with the appropriate boundary conditions
(in this model) π1 = 0, π2N = 1. Setting i = X(0) leads to the
required solution. A second way of arriving at the value X(0)/2N is
to note that X(·)/2N is a martingale, that is satisfies the “invariant
expectation” formula

E{X(t+ 1)/2N | X(t)} = X(t)/2N, (37)

and then use either martingale theory or informal arguments to
arrive at the desired value. A third approach, more informal and
yet from a genetical point of view perhaps more useful, is to observe
that eventually every gene in the population is descended from one
unique gene in generation zero. The probability that such a gene is
A1 is simply the initial fraction of A1 genes, namely X(0)/2N , and
this must also be the fixation probability of A1.

It is far more difficult to assess the properties of the (random)
time until either loss or fixation of the allele A1 occurs. The most
obvious quantity to evaluate is the mean time t̄{X(0)}, measured
with unit time corresponding to one generation, until X(·) reaches 0
or 2N , starting from X(0). No simple explicit formula for this mean
time is known, and we now discuss indirect arguments concerning
this mean and also some approximations to this mean.

The indirect arguments center around the eigenvalues of the ma-
trix P = {pij} defined by (35). Standard Markov chain theory shows
that one eigenvalue of this matrix is automatically 1. Denoting this
eigenvalue by λ0, the remaining eigenvalues will later in these notes
be shown to be

λj = [(2N)(2N − 1) . . . (2N − j + 1)]/[(2N)j], j = 1, 2, . . . , 2N.
(38)

Thus λ1 = 1 and λ2, largest non-unit eigenvalue, is 1 − (2N)−1.
From (19), the probability that X(t) = j, for j = 1, 2, . . . , 2N − 1,
given that X(0) = i, is of the form

const{1− (2N)−1}t + o{1− (2N)−1}t (39)

for t large. Thus implies that the probability that the number of A1

genes reaches 0 or 2N by time t increases very slowly as a function
of t.
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It also follows from (35) that if we put x(t) = X(t)/2N ,

E
(
x(t+1){1−x(t+1)} | x(t)

)
= {1− (2N)−1}x(t){1−x(t)}, (40)

so that the expected value of the so-called “heterozygosity measure”
2x(·){1− x(·)} decreases by a factor of 1− (2N)−1 each generation.
This confirms the conclusion drawn from equation (39). We con-
clude that although genetic variation, that is the existence of both
A1 and A2 in the population, must ultimately be lost under the
model (35), the loss of genetic variation is usually very slow. We
might even suspect that the mean time for loss of variation is of
order N generations, and will in fact soon confirm that, apart from
cases where the initial number of A1 genes is very low or very high,
this is indeed the case. This slow rate of loss may be thought of
as a stochastic analogue of the “variation-preserving” property of
infinite genetic populations.

On the other hand, we will see later that indirect arguments
concerning the mean time until loss of genetic variation found by
using the eigenvalue λ2, and to a lesser extent to the complete set
(38) of eigenvalues, are sometimes misleading, and we turn now to
approximations for this mean time.

Taylor series approximations

We consider the Markov chain model (35), and for convenience put
i/2N = x, j/M = x + δx, and write t̄(x) as the mean time for loss
or fixation of A1, given a current frequency x. We assume that t̄(x)
is a twice differentiable function of a continuous variable x. Then
from standard theory,

t̄(x) =
∑
δx

Prob{x→ x+ δx}t̄(x+ δx) + 1 (41)

= E{t̄(x+ δx)}+ 1 (42)

≈ t̄(x) + E(δx)
dt̄(x)

dx
+ 1

2
E(δx)2d

2t̄(x)

dx2
+ 1, (43)

where all expectations are conditional on x and in (43) only the first
three terms in an infinite Taylor series have been retained. This leads
to the equation

E(δx)
dt̄(x)

dx
+ 1

2
E(δx)2d

2t̄(x)

dx2
≈ −1 (44)
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Since from (35)

E(δx) = 0, E(δx)2 =
x(1− x)

2N
, (45)

the approximation (44) gives

x(1− x)

4N

d2t̄(x)

dx2
≈ −1. (46)

The solution of this equation, subject to the obvious boundary con-
ditions t̄(0) = t̄(1) = 0, is

t̄(p) = −4N{p log p+ (1− p) log(1− p)}, (47)

where p = i/2N is the initial frequency of A1. Since the above
calculations involve approximations, it is more correct to say that

t̄(p) ≈ −4N{p log p+ (1− p) log(1− p)}. (48)

We shall see later that this Taylor series approximation is also the so-
called diffusion approximation to the required mean time, although
we have here not made any reference to diffusion processes. It is
known that this is an extremely accurate approximation.

In the case i = 1, so that p = (2N)−1, the value appropriate if
A1 is a unique new mutation in an otherwise pure A2A2 population,
equation (48) leads to

t̄{(2N)−1} ≈ 2 + 2 log 2N generations, (49)

while when p = 1
2
,

t̄
{

1
2

}
≈ 2.8N generations. (50)

This very long mean time, for equal initial frequencies, is of course
intimately connected with the fact that the leading non-unit eigen-
value of (35) is very close to unity, differing from unity by a term of
order N−1.

A further question, taken up as long ago as the 1930’s by Fisher
and Wright, is the following. Suppose that, in an otherwise pure
A2A2 population, a single new mutant A1 gene arises. No further
mutation occurs, so from this point on the model (35) applies. The
mean fixation time t̄1 may be written in the form

t̄1 =
2N−1∑
j=1

t̄1,j, (51)
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where t̄1,j is the mean number of generations for which the number
of A1 genes takes the value j before reaching either 0 or 2N . Both
Fisher and Wright found that

t̄1,j ≈ 2j−1, j = 1, 2, . . . , 2N − 1, (52)

so that, using (51),

t̄1 ≈ 2
(
log(2N − 1) + γ

)
, (53)

where γ is Euler’s constant 0.5772157 . . . This approximation is
very close to that given in (49). (The best approximation known is
t̄1 ≈ 2 log(2N) + 1.355076.)

There is an ergodic equivalent to the expressions in (51) and (52)
which is perhaps of more interest than (51) and (52) themselves, and
which is indeed the route by which Fisher arrived at these formulae.
Consider a sequence of independent loci, each initially pure “A2A2”,
and at which a unique mutation A1 occurs in generation k in the kth
member of the sequence. We may then ask how many such loci will
be segregating for A1 and A2 after a long time has passed, and at
how many of these loci will there be exactly j “A1” genes. It is clear
that the mean values of these quantities are t̄1 and t̄1,j, respectively,
and this gives us some idea, at least insofar as the model (35) is
realistic, of how much genetic variation we may expect to see in any
population at a given time. The question of the amount, and the
nature, of the genetic variation that can be expected in a popula-
tion at any given time will be discussed later, and at much greater
length. In that discussion ergodic arguments, moving from a “time”
calculation to a result concerning the make-up of a contemporary
population, will again be used.

Conditional processes

We return to the model (35) and consider now only those cases for
which the number of A1 genes eventually takes the value 2N. We
first find the transition matrix of the conditional process when the
condition is made that eventually this fixation event occurs.

If the typical term in this conditional process transition matrix
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is denoted p∗ij, we get, from (24) and (36)

p∗ij =

(
2N
j

)(
i

2N

)j (
2N − i

2N

)2N−j
j

i

=

(
2N − 1
j − 1

)(
i

2N

)j−1(
2N − i

2N

)2N−j

. (54)

An intuitive explanation for the form of p∗ij is that, under the con-
dition that A1 fixes, at least one A1 gene must be produced in each
generation. Then p∗ij is the probability that the remaining 2N − 1
gene transmissions produce exactly j − 1 A1 genes.

Conditional Markov chain theory (see the discussion following
(26)) shows that the eigenvalues of P ∗ are identical to those of P
(with one unit eigenvalue omitted). However, as the results just
given above and the diffusion approximation to the conditional pro-
cess (given below) both show, the properties of the conditional pro-
cess are quite different from those of the original (unconditional)
process (35). This is one reason why the use of eigenvalues in as-
sessing properties of the time until loss of genetic variation in the
unconditional process, as discussed above, can lead to misleading
conclusions.

We now consider approximate calculations for the conditional
process parallel to those leading to those leading to (46) for the
unconditional process. To use equations and approximations parallel
to those in (41) – (43), we have to find an expression for E∗(δx)
and E∗(δx)2, the means and of δx and (δx)2 respectively, in the
conditional process whose transition matrix is given in (54). The
intuitive comments following (54) show that, given the number i
of A1 genes in any generation, the mean number of A1 genes in
the next generation is 1 + (2N − 1)i/(2N). The difference between
this value and i is 1 − i/(2N) = 1 − x, where x = i/(2N). Thus
the mean increase in the proportion of A1 genes, that is E∗(δx), is
(1 − x)/(2N). Similar arguments show that, if terms of order n−2

are ignored, E∗(δx)2 is x(1− x)/(2N).
If the conditional mean time to fixation is denoted by t̄∗(x), given

a current frequency x of A1, these arguments lead to the approxi-
mating equation

(1− x)

2N

dt̄∗(x)

dx
+
x(1− x)

4N

d2t̄∗(x)

dx2
= −1. (55)
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The solution of this equation, subject to t̄∗(1) = 0 and the require-
ment

lim
x→0

t̄∗(x) is finite, (56)

and assuming initially x = p, is

t̄∗(p) = −4Np−1(1− p) log(1− p), (57)

so that the Taylor series approximation to the conditional mean time
is

t̄∗(p) ≈ −4Np−1(1− p) log(1− p). (58)

(As with the unconditional process, we see later that this is also the
diffusion approximation to this mean time.) We observe from (57)
that

t̄∗{(2N)−1} ≈ 4N − 2 generations, (59)

t̄∗
{

1
2

}
≈ 2.8N generations, (60)

t̄∗{1− (2N)−1} ≈ 2 log 2N generations. (61)

The approximation (60) is to be expected from the approximation
(50), since by symmetry, when the initial frequency of A1 is 1

2
, the

conditioning should have no effect on the mean fixation time. On
the other hand, the approximations (59) and (61) provide new infor-
mation. The approximation (59) shows that, while when the initial
frequency of A1 is (2N)−1 it is very unlikely that fixation of A1 will
occur, in the small fraction of cases when fixation of A1 does occur,
an extremely long fixation time may be expected. The approxi-
mation (61) shows that, while when the initial frequency of A1 is
(2N)−1, so that loss of A1 is likely to occur, a quite small loss time
may be expected.

Analogous arguments show that if the condition is made that
eventually A1 is lost from the population, the Taylor series approx-
imation t̄∗∗(p) for this conditional mean time for this to occur is
given by

t̄∗∗(p) =
−4Np log p

1− p
. (62)

Since the probability that A1 is eventually fixed in the population is
p and the probability that it is eventually lost is 1− p, the equation
t̄ = pt̄∗ + (1 − p)t̄∗∗ must hold, and a comparison of (47), (57) and
(62) shows that this is the case.
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Further conclusions will be given later when we consider the full
diffusion approximation to the Wright–Fisher model (35).

Some remarks about the Wright-Fisher model

Perhaps unfortunately, the simple Wright–Fisher model has assumed
a “gold standard” status, and serves as a reference distribution for
several calculations in population genetics theory. This has arisen
largely for historical reasons, and the fact that this is only one model
among many, and is far less general and plausible than the Cannings
model, to be discussed later, is seldom mentioned. We mention two
examples where the fact that the Wright–Fisher model is no more
than a reference model has been often overlooked, with unfortunate
consequences.

First, the concept of the “effective population size”, discussed in
more detail later, is defined with reference to the simple Wright–
Fisher model (35). A certain model has effective population size Ne

if some characteristic of the model has the same value as the cor-
responding characteristic for the simple Wright–Fisher model (35)
whose actual size isNe. Further, the comparison of several character-
istics are possible, and this leads to different concepts, or varieties,
of the effective population size. Except in simple cases, the concept
is not directly related to the actual size of a population. For exam-
ple, a population might have an actual size of 200 but, because of a
distorted sex ratio, have an effective population size of only 25. This
implies that some characteristic of the model describing this pop-
ulation, for example a leading eigenvalue, has the same numerical
value as that of a Wright–Fisher model with a population size of 25.
It would be more useful if the adjective “effective” were replaced by
“in some given respect Wright–Fisher model equivalent”. Misinter-
pretations of effective population size calculations frequently follow
from a misunderstanding of this fact.

Second, the fundamental genetic parameter θ will be introduced
later in further discussion of the Wright–Fisher model and in other
models. For the Wright-Fisher model θ assumes the value 4Nu, and
the identification of θ and 4Nu is very common in the literature.
However, for models other than Wright–Fisher models a different
definition of θ is needed. This is particularly true of the Cannings
model as well as of the Moran model, both of which are discussed
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later. The identification of θ with 4Nu arises in effect from an inap-
propriate assumption that the simple Wright–Fisher model (35) is
the stochastic evolutionary model relevant to the situation at hand.
The rather more general definition of θ as 4Neu partly overcomes
this problem, but not entirely, since (as mentioned above) there are
several distinct concepts of the effective population size Ne.

Mutation

One-way mutation

Suppose now that A1 mutates to A2 at rate u but that there is no
mutation from A2 to A1. It is then reasonable to replace the model
(35) by

pij =

(
2N
j

)
(ψi)

j(1− ψi)
2N−j (63)

where ψi = i(1 − u)/2N . Here interest centers on properties of
the time until A1 is lost, either using an eigenvalue approach or
mean time properties. For the moment we consider only mean time
properties and note that an argument parallel to that leading to
(46) shows that, to a first approximation, the mean time t̄(x), given
a current frequency x, satisfies the approximating equation

−uxdt̄(x)
dx

+
x(1− x)

4N

d2t̄(x)

dx2
= −1. (64)

If initially x = p, the solution of this equation, subject to the re-
quirements t̄(0) = 0,

lim
x→1

t̄(x) is finite,

is

t̄(p) =

1∫
0

t(x, p) dx (65)

where for θ(= 4Nu) 6= 1,

t(x; p) = 4Nx−1(1− θ)−1{(1− x)θ−1 − 1}, 0 < x ≤ p, (66)

t(x; p) = 4NKx−1(1− θ)−1(1− x)θ−1, p ≤ x ≤ 1, (67)

where K = 1− (1− p)1−θ.
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The corresponding formula for the case θ = 1 is found from (66)
and (67) by standard limiting processes. It may be shown that with
the definition of t(x, p) in (66) and (67), t̄(p) may be written as

t̄(p) =
∞∑

j=1

4N

j(j − 1 + θ)

(
1− (1− p)j

)
. (68)

This is of course only an approximate formula, so more accurately
we should write

t̄(p) ≈
∞∑

j=1

4N

j(j − 1 + θ)

(
1− (1− p)j

)
. (69)

The function t(x, p) defined in (66) and (67) is more informative
than it initially appears since, as we see later, t(x, p)δx provides
an excellent approximation to the mean number of generations for
which the frequency of A1 takes a value in (x, x+δx) before reaching
zero.

For the application of the above theory to the “infinitely many
alleles” model and to molecular population genetics, two particular
values of p have to be considered. The first of these is the values p =
1/(2N). For this value of p the quantity K in (67) is approximately
(1− θ)/(2N), and equations (66) and (67) give, approximately,

t(x;
1

2N
) = 4N, 0 < x ≤ 1

2N
, (70)

t(x;
1

2N
) = 2Nx−1(1− x)θ−1,

1

2N
≤ x ≤ 1, (71)

This leads to the approximation

t̄(
1

2N
) ≈ 2

(
1 +

1∫
(2N)−1

x−1(1− x)θ−1 dx
)
. (72)

The second important value of p is when p = 1. For this value
the approximation (69) gives, immediately,

t̄(1) ≈
∞∑

j=1

4N

j(j − 1 + θ)
. (73)
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The value θ = 2 has no particular biological significance. It does
however lead to one remarkable calculation. For this value of θ, (69)
gives

t̄(p) ≈ −4Np log p

1− p
(74)

when p 6= 1, and by a straightforward limiting process,

t̄(p) ≈ 4N (75)

when p = 1. This value also follows directly from (73) when θ = 2.
Note that the formulae (74) and (62) are identical. This is unex-

pected, since one formula applies for a conditional process without
mutation, whereas the other applies for an unconditional process
with mutation. It can be shown (see the discussion in the paragraph
following equation (298) below) that the entire properties of the two
processes (and not simply these two mean times) are identical.

Two-way mutation

Suppose next that A2 also mutates to A1 at rate v. It is now rea-
sonable to define ψi in (63) by

ψi = {i(1− u) + (2N − i)v}/2N. (76)

There now exists a stationary distribution φ′ = (φ0, φ1, . . . , φ2N)
for the number of A1 genes, where φi is the stationary probability
that the number of A1 genes takes the value i. The exact form
of this distribution is complex and is not known, and we consider
later the diffusion approximation to it. On the other hand, certain
properties of this distribution can be extracted from (63) and (76).
The stationary distribution satisfies the equation φ′ = φ′P , where P
is defined by (63) and (76), so that if ξ is a vector with ith element i
(i = 0, 1, 2, . . . , 2N) and µ is the mean of the stationary distribution,

µ = φ′ξ = φ′Pξ.

The ith (i = 0, 1, 2, . . . , 2N) component of Pξ is∑
j

(
2N
j

)
ψj

i (1− ψi)
2N−j

and from the standard formula for the mean of the binomial distri-
bution, this is 2Nψi or

i(1− u) + (2N − i)v.
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Thus,

φ′Pξ =
∑

{i(1− u) + (2N − i)v}αi

= µ(1− u) + v(2N − µ).

It follows that
µ = (1− u)µ+ v(2N − µ)

or
µ = 2Nv/(u+ v). (77)

Similar arguments show that the variance σ2 of the stationary
distribution is

σ2 = 4N2uv/{(u+ v)2(4Nu+4Nv+1)}+small order terms. (78)

Further moments can also be found, but we do not pursue the de-
tails. The above values are sufficient to answer a question of some
interest in population genetics, namely “what is the probability of
two genes drawn together at random are of the same allelic type?”
If the frequency of A1 is x and terms of order N−1 are ignored, this
probability is x2 +(1−x)2. The required value is the expected value
of this taken over the stationary distribution, namely

E{x2 + (1− x)2} = 1− 2E(x) + 2E(x2).

If u = v, 4Nu = θ, equation (77) and equation (78) together show
that this is

Prob (two genes of same allelic type) ≈ (1 + θ)/(1 + 2θ). (79)

This expression is more revealing than might originally be thought.
Since u = v, there is a complete symmetry between the properties of
A1 and A2 genes. One might then have thought that the probability
in (79) should be 1/2. However, this is not the case. Indeed, if θ is
small this probability is close to 1. The reason for this is that small
values of θ correspond to very low mutation rates. For such low
rates, the most likely situation, at any time, is that the number of
A1 genes in the population is likely to be close to 0 or close to 2N .
In both cases the probability that two genes drawn at random from
the population are of the same allelic type is close to 1. We confirm
this observation later when discussion the stationary distribution of
the number of A1 genes.
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The probability in (79) can be arrived at in another way, which
we now consider since it is useful for purposes of generalization. Let
the required probability be F and note that this is the same in two
consecutive stationary generations. Two genes drawn at random
in any generation will have a common parent gene with probability
(2N)−1, or different parent genes with probability 1−(2N)−1, which
will be of the same allelic type with probability F . The probability
that neither of the genes drawn is a mutant, or that both are, is
u2 + (1−u)2, while the probability that precisely one is a mutant is
2u(1− u). It follows that

F = {u2 + (1− u)2}{ 1

2N
+ F (1− 1

2N
)}

+ 2u(1− u)(1− F )(1− 1

2N
).

Thus exactly

F =
1 + 2u(1− u)(2N − 2)

1 + 4u(1− u)(2N − 1)
,

and approximately

F ≈ (1 + θ)/(1 + 2θ), (80)

in agreement with (79). We later consider a third approach which
yields the same answer.

The eigenvalues of the model defined jointly by (63) and (76)
are known. They are best found by a very general approach due to
Cannings, which finds eigenvalues in a wider range of models than
that defined by (63) and (76). We now turn to these models.

The Cannings (exchangeable) model

An important generalization of the Wright–Fisher form of model is
due to Cannings (1974). We consider a “population” of genes of
fixed size 2N , reproducing at time points t = 0, 1, 2, 3, . . . . The
stochastic rule determining the population structure at time t + 1
is quite general, provided that any subset of genes at time t has the
same joint probability distribution of “offspring” genes at time t+1
as any other subset of the same size. Thus, if the ith gene leaves
Yi offspring genes, we require only that Y1 + . . . + Y2N = 2N and
that the joint distribution of Yi, Yj, . . . , Yk be independent of the
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choice of i, j, . . . , k. In particular all genes must have the same off-
spring probability distribution. This distribution must have mean
1, by symmetry, and we denote the variance of this distribution
by σ2. This interpretation of σ2 is used throughout these
notes when Cannings models are considered. In some Can-
nings models a gene present at time t can also be present at time
t + 1, and is then counted as one of its own offspring. An example
of this is discussed later.

The Wright–Fisher model (35) is clearly a particular case of the
Cannings model since in the model (35) Y1, Y2, . . . , Y2N have a sym-
metric multinomial distribution. Thus the Cannings model is more
general than the Wright–Fisher model, and by choosing σ2 appro-
priately it can be made much more realistic than the Wright–Fisher
model.

Our first calculation concerning the Cannings model relates to
eigenvalues. Let the genes be divided into two allelic classes, A1

and A2, as for the Wright–Fisher model (35), and denoting as below
the number of A1 genes at time t by X(t) , Then we have

Theorem (Cannings, (1974)). If

pij = Prob{X(t+ 1) = j | X(t) = i}, i, j = 0, 1, 2, . . . , 2N,

then the eigenvalues of the matrix {pij} are

λ0 = 1, λj = E(Y1Y2 · · ·Yj), j = 1, 2, . . . , 2N. (81)

Further, λ0 ≥ λ1 ≥ λ2 . . . ≥ λ2N .
As noted above, in the Wright–Fisher model (35), any set Y1, Y2,

. . ., Yj has a multinomial distribution with index 2N and common
parameter (2N)−1. This implies that if we write

(2N)!

y1!y2! . . . yj!(2N − y1 − . . .− yj)!
=

(
n

y

)
,

the eigenvalue λj, j = 1, 2, . . . , 2N is given by

λj =
∑

. . .
∑

y1y2 . . . yj

(
n

y

)(
1

2N

)∑
yi
(

1− j

2N

)2N−
∑

yi

= (2N)(2N − 1) . . . (2N − j + 1)/(2N)j. (82)

This confirms the values given in (38), which were found originally
(Feller, (1951)) by other methods.
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The theorem shows that, for the Cannings model, the leading
non-unit eigenvalue is λ2 = E(Y1Y2). Now

∑
Yj ≡ 2N , so that the

variance of
∑
Yj is 0. Then by symmetry,

2N var(Yi) + 2N(2N − 1) covar(Yi, Yj) = 0.

This implies that

covar(Yi, Yj) = −σ2/(2N − 1), (83)

where σ2 = var(Yi). From this,

λ2 = E(Y1Y2)

= Covar(Y1, Y2) + E(Y1)E(Y2)

= 1− σ2/(2N − 1). (84)

To confirm this formula we observe that, in the Wright–Fisher model,
Yi has a binomial distribution with index 2N and parameter (2N)−1.
Thus σ2 = (2N − 1)/(2N) and

λ2 = 1− {2N − 1}/{2N(2N − 1)} = 1− (2N)−1,

agreeing with the “j = 2” case in the expression in equation (82).
Other properties of the Cannings model follow easily. For exam-

ple, by symmetry, the probability of eventual fixation of any allele
in such a model must be its initial frequency. Further, suppose that
there are X(t) A1 genes in the Cannings model at time t, and write
X(t) = i for convenience. If we relabel genes so that the first i genes
are of allelic type A1 and the remaining genes of allelic type A2,

Var{X(t+ 1) | X(t)} = Var(Y1 + . . .+ Yi)

= iσ2 + i(i− 1) Covar(Y1, Y2)

= i(2N − i)σ2/(2N − 1), (85)

from equation (83). If x(t) = X(t)/2N , it follows that

var{x(t+ 1) | x(t)} = x(t){1− x(t)}σ2/(2N − 1). (86)

This equation shows that the rate of loss of heterozygosity in
the population is directly proportional to σ2. As an extreme case,
suppose that one individual is chosen at random from the popula-
tion to produce all the offspring in the next generation. It follows
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that x(t + 1) is either 1 (with probability x(t)) or 0 (with proba-
bility 1 − x(t)). The variance of x(t + 1) is then easily shown to
be x(t){1 − x(t)}. We now check that this result is given by (86).
The number of offspring of a randomly chosen individual is, in the
model considered, either 0 (with probability 1−1/(2N)) or 2N (with
probability 1/(2N)). The variance σ2 of this offspring distribution
is easily seen to be 2N − 1, and inserting this value into (86) we do
indeed obtain the result x(t){1− x(t)}.

We now introduce mutation, and assume that A1 genes mutate
to A2 at rate u, with reverse mutation at rate v. We also assume
that if mutation does not exist the conditions for Theorem 1 above
hold. Cannings was able to find an expression for the eigenvalues in
this “mutation” model. The details are complex and here we only
give the results for particular cases. For the Wright–Fisher model,
the eigenvalues of the matrices defined by (63) and (76) are λ0 = 1
and, for j = 1, 2, . . . , 2N,

λj = (1− u− v)j[2N(2N − 1) · · · (2N − j + 1]/(2N)j. (87)

The leading non-unit eigenvalue λ1 is 1−u− v and is thus indepen-
dent of N . This is extremely close to unity and suggests a very slow
rate of approach to stationarity in this model. These eigenvalues
apply also in any Cannings one-way mutation model, for which we
simply put v = 0 in (87).

The Cannings model has an interesting relationship with another
class of models frequently used in population genetics, namely condi-
tional branching process model. (These are in fact also a particular
case of the Cannings model.) In the conditional branching process
model it is supposed that each gene produces k offspring with prob-
ability fk (k = 0, 1, 2, 3, . . .), with the numbers of offspring from
different parents being assumed independent. If f(s) =

∑
fis

i, the
generating function of the distribution of the total number of off-
spring genes is [f(s)]2N . We now make the condition that the total
number of such offspring is 2N . If at time t there were i A1 genes,
the probability pij that at time t+ 1 there will be j A1 genes is, for
these models,

pij =
coeff tjs2N in [f(ts)]i[f(s)]2N−i

coeff s2N in [f(s)]2N
. (88)

Transition probabilities of this form were introduced by Moran and
Watterson (1958) who used them to find explicit expressions for the
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leading non-unit eigenvalue in dioecious populations with various
family structures.

Karlin and McGregor (1965) analyzed the conditional branching
process model in detail. They show in particular that the eigenvalues
of the matrix {pij} are

λ0 = λ1 = 1, λk =
coeff s2N−k in [f(s)]2N−k[f ′(s)]k

coeff s2N in [f(s)]2N
, k = 2, 3, . . . , 2N.

(89)
These must agree with the values found in equation (81), since a
conditional branching process is a Cannings model. We check that
this agreement holds for the eigenvalue λ2. It is clear from (88) that∑

j

pijt
j =

coeff s2N in [f(ts)]i[f(s)]2N−i

coeff s2N in [f(s)]2N
.

Differentiating twice with respect to t and putting t = 1,∑
j

j(j − 1)pij = λ2i(i− 1) + η2i, (90)

where λ2 is defined by equation (89) and η2 is some constant inde-
pendent of i and j. Now

∑
jpij = i by symmetry, and

∑
j(j −

1)p1j = σ2, where σ2 is defined after (83). Thus putting i = 1 in
(90) we get η2 = σ2 and then putting i = 2,∑

j

j(j − 1)p2j = 2λ2 + 2σ2

so that ∑
j

j2p2j = 2λ2 + 2σ2 + 2. (91)

But the left-hand side in (91) is E(Y1+Y2)
2, where Yi is the (random)

number of offspring genes left by parental gene i. It follows that

2 + 2σ2 + 2E(y1y2) = 2λ2 + 2σ2 + 2

or
λ2 = E(Y1Y2),

as required. Parallel calculations can be made for the remaining
eigenvalues, but we do not pursue the details here.
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The Moran model

Introduction

The conclusions reached so far apply only for the Wright–Fisher
model and, more generally, to the Cannings model. Different conclu-
sions are reached for models other than these, and we consider now
a rather different model, due to Moran (1958). Moran’s model has
the additional advantage of allowing explicit expressions for many
quantities of evolutionary interest, although, strictly, it applies only
for haploid populations.

Consider then a haploid population in which, at time points t = 1,
2, 3, . . ., an individual is chosen at random to reproduce. After
reproduction has occurred, an individual is chosen to die (possibly
the reproducing individual but not the new offspring individual).

As is discussed later, the model can be generalized by allowing
mutation. We consider first the simplest case where there is no mu-
tation. Suppose the population consists of 2N haploid individuals
(we use this notation to allow direct comparison with the diploid
case), each of whom is either A1 or A2. Suppose also that, at time
t, the number of A1 individuals is i. Then at time t+1 there will be
i−1 A1 individuals if an A2 is chosen to give birth and an A1 individ-
ual is chosen to die. The probability of this, under our assumptions,
is

pi,i−1 = i(2N − i)/(2N)2. (92)

Similar reasoning shows that

pi,i+1 = i(2N − i)/(2N)2, (93)

pi,i = {i2 + (2N − i)2}/(2N)2. (94)

The matrix defined by these transition probabilities is a continuant,
so that the standard theory of continuant Markov chain transition
matrices can be applied to it. In the standard notation of continuant
matrices, pi,i−1 = µi, pi,i+1 = λi, and

ρ0 = 1, ρk =
µ1µ2 · · · ρk

λ1λ2 · · ·λk

.

Thus for the Moran model above,

λi = µi = i(2N − i)/(2N)2, ρi = 1, i = 0, 1, 2, . . . , 2N. (95)
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It follows either from continuant Markov chain theory, or from the
kind of argument used above for the Wright–Fisher model, that
the probability πi of eventual fixation of A1, given currently i A1

individuals, is
πi = i/2N. (96)

Further, continuant Markov chain theory shows, using notation de-
veloped above, that if initially there are iA1 genes, the mean number
t̄ij of birth-death events at which there are jA1 genes is given by

t̄ij = 2N(2N − i)/(2N − j), j = 1, 2, . . . , i,

t̄ij = 2Ni/j, j = i+ 1, . . . , 2N − 1. (97)

Thus, immediately, the mean number t̄i of birth-death events until
loss or fixation of A1, given initially iA1 genes, is given by

t̄i = 2N(2N − i)
i∑

j=1

(2N − j)−1 + 2Ni
2N−1∑
j=i+1

j−1. (98)

Further, given that A1 is eventually fixed,

t̄∗ij = 2N(2N − i)j/{i(2N − j)}, j = 1, 2, . . . , i,

t̄∗ij = 2N, j = i+ 1, . . . , 2N − 1, (99)

t̄∗i = 2N(2N − i)i−1

i∑
j=1

j(2N − j)−1 + 2N(2N − i− 1).(100)

An interesting example of these formulae is the case i = 1, corre-
sponding to a unique A1 mutant in an otherwise purely A2 popu-
lation. Here t̄∗1j = 2N for all j so that, given that the mutant is
eventually fixed, the number of A1 genes takes, on average, each
of the values 1, 2, . . . , 2N − 1 a total of 2N times. The conditional
mean fixation time is given by

t̄∗1 = 2N(2N − 1) (101)

birth-death events. The variance of the conditional absorption time
can also be written down but we do not do so here.

The exact results found above for the Moran model are unwieldy,
so we now give simple approximate expression for the most impor-
tant conclusion derived from them. It is evident from the expression
(98) that

t̄(p) ≈ −(2N)2{p log p+ (1− p) log(1− p)}, (102)
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where p = i/2N . The similarity between this formula and (47) is
interesting. A factor of 2N may be allowed in comparing the two
to convert from birth-death events to generations. There remains
a further factor of 2 to explain, and we show later why this factor
exists.

The eigenvalues of the Moran model transition matrix can be
found by using Cannings’ Theorem. Take any collection of j genes
and note that the probability that one of these is chosen to reproduce
is j/2N , with the same probability that one is chosen to die. For
this model a gene can be (and indeed usually is) one of its own
“offspring”. Using the notation of Cannings’ Theorem, the product
Y1Y2 . . . Yj can take only three values:

0 if one of these genes is chosen to die and the gene so chosen is
not chosen to reproduce,

2 if one of the genes is chosen to reproduce and none is chosen
to die,

1 otherwise.

Thus λ0 = 1 and

λj = E(Y1Y2 . . . Yj)

= 2j(2N − j)/(2N)2 + 1− j(4N − j − 1)/(2N)2

= 1− j(j − 1)/(2N)2, j = 1, 2, . . . , 2N. (103)

The largest non-unit eigenvalue is

λ2 = 1− 2/(2N)2. (104)

The fact that λ2 is very close to unity agrees with the very large
mean absorption times (98) for intermediate values of i.

It is possible to find the right eigenvector r and left eigenvector
`′ corresponding to this eigenvalue. They are given by

r = (0, 1(2N − 1), 2(2N − 2), . . . , i(2N − i), . . . , 1(2N − 1), 0)′

`′ =
(
−1

2
(2N − 1), 1, 1, 1, . . . , 1,−1

2
(2N − 1)

)
.

One-way mutation in the Moran model

If mutation from A1 to A2 is allowed (at rate u), with no reverse
mutation, A1 must eventually become lost, and interest centers on
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properties of the time for this to occur. The model defined in (92)
– (94) is now amended to

pi,i−1 = {i(2N − i) + ui2}/(2N)2 = µi

pi,i+1 = i(2N − i)(1− u)/(2N)2 = λi (105)

pi,i = 1− pi,i−1 − pi,i+1.

Continuant Markov chain theory can now be used to find explicit
exact t̄ij and thus t̄i. We do not present these here since it will be
more useful (see (109) - (113) below) to proceed via approximations.

Two-way mutation in the Moran model

If mutation from A2 to A1 (at rate v) is also allowed, the model
becomes

pi,i−1 = {i(2N − i)(1− v) + ui2}/(2N)2 = µi

pi,i+1 = {i(2N − i)(1− u) + v(2N − i)2}/(2N)2 = λi (106)

pi,i = 1− pi,i−1 − pi,i+1.

The typical value φj in the stationary distribution φ for the number
of A1 genes is found to be

φj = φ0
(2N)!Γ{j + A}Γ{B − j}
j!(2N − j)!Γ{A}Γ{B}

(107)

where Γ{·} is the well-known gamma function, A = 2Nv/(1−u−v),
B = 2N(1−v)/(1−u−v), C = 2Nu/(1−u−v), D = 2N/(1−u−v)
and α0 = Γ{B}Γ{A+C}/[Γ{D}Γ{C}]. Although these expressions
are exact they are rather unwieldy, and we consider in a moment a
simple approximation to φj.

The Markov chain defined by (106), having a stationary distribu-
tion and a continuant transition matrix, is automatically reversible.
This is not necessarily true for other genetical models: for exam-
ple it can be shown that the Wright–Fisher Markov chain defined
jointly by (63) and (76) is not reversible. What does reversibility
mean in genetical terms? All the theory we have considered so far
is prospective, that is, given the current state of a Markov chain,
probability statements are made about its future behavior. Recent
developments in population genetics theory often concern the ret-
rospective behavior: the present state is observed, and questions
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are asked about the evolution leading to this state. For reversible
processes these two aspects have many properties in common, and
information about the prospective behavior normally yields almost
immediately useful information about the retrospective behavior.
We shall see later how the identity of prospective and retrospective
probabilities can be used to advantage in discussing various evolu-
tionary questions.

The eigenvalues of the transition matrix defined by (106) can be
found by applying the Cannings theory for cases involving mutation.
It is found after some calculation for these eigenvalues that λ0 = 1
and

λj = 1− j(u+ v)

(2N)
− j(j − 1)(1− u− v)

(2N)2
, j = 1, . . . , 2N. (108)

These eigenvalues apply also in the case v = 0. The leading non-unit
eigenvalue is 1−(u+v)/(2N), and since 2N time units in the process
we consider may be thought to correspond to one generation in the
Wright–Fisher model, this agrees closely with the value 1 − u − v
found in (87) in that model.

We now consider approximations for several of the above quanti-
ties. First, we recall the result given in (102) for the mean number
of birth-death events before loss of genetic variation when there is
no mutation. In the case of the one-way mutation model (105), an
approximating expression for the mean time for loss of A1 in this
model, given initially that there are i A1 genes, (that is, t̄i), for the
case θ 6= 1 is

t̄i ≈ (2N)2(1− θ)−1
( p∫

0

x−1{(1− x)θ−1 − 1}dx

+

1∫
p

x−1(1− x)θ−1{1− (1− p)1−θ} dx
)

(109)

birth-death events, where p = i/(2N), x = j/(2N) and θ is defined
(for this formula) for as 2Nu. (The more appropriate and exact
expression 2Nu/(1 − u) for θ in the Moran model given in (152)
below. Since u is very small, the value 2Nu is very close to this
expression, so that when considering approximation formulae, we
use this approximating value.) Clearly (109) does not apply for the
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case θ = 1, and the appropriate formula for this value of θ is given
below.

The particular case p = (2N)−1 will be of interest to us later in
the context of the infinitely many alleles model. For this value of p,
the expression (109) reduces, to a close approximation, to

t̄i ≈ 2N
(
1 +

1∫
(2N)−1

x−1(1− x)θ−1 dx
)

(110)

birth-death events.
The two cases θ = 1, θ = 2 have no particular biological rele-

vance. However, it is interesting to consider the expression for t̄i in
these two cases, since the expressions for t̄i simplify for them. The
expression given in (109) does not apply for the case θ = 1, and a
limiting (θ → 1) calculation is needed. This gives

t̄i ≈ −(2N)2

p∫
0

x−1 log(1− x) + (2N)2 log p log(1− p), p 6= 1,

t̄i ≈ 2π2N2/3, p = 1. (111)

For θ = 2, (109) gives

t̄i ≈ −(2N)2 p log p

(1− p)
, p 6= 1, (112)

t̄i ≈ (2N)2, p = 1. (113)

It is interesting to compare the values in (111) and (113) when
p = 1. The value in (113) is about 60% of the value in (111), and
this shows the effect of doubling the mutation rate in speeding up
the loss of the allele A1.

We consider finally an approximation to the stationary distribu-
tion in the two-way mutation model, given exactly in (107). We put
x = j/(2N), u = α/(2N), v = β/(2N) and let j and 2N increase
indefinitely with x, α and β fixed. Using the Stirling approxima-
tion Γ{y + a}/Γ{y} ∼ ya for large y, moderate a, the stationary
probability φj in (107) becomes, approximately,

φj ∼ (2N)−1 Γ{α+ β}
Γ{α}Γ{β}

xβ−1(1− x)α−1, (114)
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at least for values of x not extremely close to 0 or 1. Clearly this
approximation expression is far simpler than the exact value (107),
and that is why this approximation is often used. It also confirms
a conclusion reached above, that if mutation rates are very low, so
the both α and β are very small, the stationary distribution is U-
shaped, so that it is most likely that the number of A1 genes in any
given generation is either extremely small or extremely close to 2N .

M-allele models

The models considered so far can easily be extended to allow M
different alleles at the locus in question, where M is an arbitrary
positive integer. (For the ABO blood group system, for example,
there are three possible alleles, A, B and O at the gene locus for
this blood group, so that for this case M = 3.) For an M -allele
model the population configuration at any time can be described
by a vector (X1, X2, . . . , XM), where Xi is the number of genes of
allelic type Ai at that time. We assume, as for the “two-allele” model
considered above, that the population size is fixed at the value N
in all generations, so that X1 + X2 + . . . + XM = 2N . Thus only
M−1 elements in the above vector are independent, but for reasons
of symmetry we retain all elements in this vector.

The first case to consider is that where there is no mutation, and
our first task is to consider the M -allele generalizations of some of
the results found above for the Wright-Fisher, the Cannings and the
Moran models. In doing this, it is sometimes convenient to consider
some specific allele, say the allele Ai, on its own, all other alleles
being classed as non-Ai, and if this is done some of the above theory
can be applied. Some examples of this strategy are given below.

We consider first theM -allele generalization of the Wright–Fisher
model (35), for which we assume that

Pr{Xi(t+ 1) genes of allele Ai at time t+ 1 | Xi(t) genes of allele

i at time t, i = 1, 2, . . . ,M}

=
(2N)!

X1(t+ 1)! . . . XM(t+ 1)!
ψ

X1(t+1)
1 . . . ψ

XM (t+1)
M (115)

where ψi = Xi(t)/(2N).
The eigenvalues of the Markov chain transition matrix defined

implicitly by (115) are the same as the values given in the expres-
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sion (38), but for the M -allele model λj has multiplicity (M + j −
2)!/{(M − 2)!/j!}, (j = 2, 3, . . . , 2N). The eigenvalue λ0 = 1 has
total multiplicity M . These eigenvalues have the interesting inter-
pretation (Littler, (1975)) that

Pr{at least j allelic types remain present at time t} ∼ const λt
j.

(116)
M -allele processes raise questions that are more complex than

two-allele processes. In the M -allele process without selection or
mutation, (that is the process discussed above), one of the M alleles
will eventually become fixed in the population. It is easy to see, by
considering any one allele (say Ai), and grouping all other alleles as
“non-Ai”, that the probability that any specified allele is eventually
fixed is its initial frequency. On the other hand, some interesting
“mean time” questions are not so simply found. For example, it is
much harder to find the probability that a given allele is the first
one lost from the population. It is also quite difficult to find the
mean number of generations until some (unspecified) allele is fixed
in the population, or (more difficult) until exactly two alleles exist
in the population. We later use diffusion theory to approach some
of these questions.

When mutation exists between all alleles there will exist a multi-
dimensional stationary distribution of allelic numbers. The means,
variances and covariances in this distribution can be found by proce-
dures analogous to those leading to the expressions in (77) and (78).
We consider in detail only the case where mutation is symmetric:
here the probability that any gene mutates is assumed to be u, and
given that a gene of allelic type Ai has mutated, the probability that
the new mutant is of type Aj is (M − 1)−1, (j 6= i). By symmetry,
the mean number of genes of allelic type Ai alleles in the stationary
distribution must be 2N/M . However, it sometimes occurs that this
is not a likely value for the actual number of genes of any allelic type
to arise, and we see this best by finding the probability F that two
genes taken at random from the population are of the same allelic
type. Generalizing the argument that led to (80) we find, ignoring
terms of order u2, that

F =
(
(2N)−1+{1−(2N)−1}F

)
(1−2u)+

(
1−(2N)−1

)
(1−F )

(
2u/(M−1)

)
.

If we write θ = 4Nu, this gives

F ≈ (M − 1 + θ)/(M − 1 +Mθ). (117)
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This expression agrees with that in (80) for the case M = 2. For
large M ,

F ≈ (1 + θ)−1, (118)

an expression we return to later.
These formulas demonstrate the theme discussed below (79). In

(79) and more generally in (118), if θ is small, then F ≈ 1. This im-
plies that it is very likely that one or other allele appears with high
frequency with the remaining alleles having negligible frequency, de-
spite the fact that all alleles are selectively equivalent. The imbal-
ance arises because of stochastic effects, and is quite different from
that predicted by considering the mean allele frequencies only.

The eigenvalues of the matrix defined by the symmetric mutation
model are found from the values (82) if λj is multiplied by

{1− uM

(M − 1)
}j.

The multiplicity of λj is, as in the “no mutation” case, (j + M −
2)!/{j!(M − 1)!}.

In view of the comments concerning the Cannings model made
above, it is plausible that the approximations (117) and (118) hold
for that model, with however θ now defined by θ = 4Nu/σ2. There is
also an M -allele Moran model which allows various exact formulae,
but we do not consider this here.

Infinitely many alleles models

Introduction

Infinitely many alleles models were inspired by the knowledge of
the gene as a sequence of nucleotides. There are four possible nu-
cleotides at each site in this sequence, a, g, c and t, and an “allele”
is simply one specific sequence, such as tccgagtgcat...tc. In a typical
gene, consisting of a sequence of 3000 nucleotides, there are 43000

possible sequences, that is 43000 possible alleles. For essentially all
practical purposes we may take this number as infinity, thus lead-
ing to the infinitely many alleles model. Thus this model is one of
molecular population genetics, since it is inspired by knowledge of
the molecular nature of the gene. Some comments about molecular
population genetics theory are given in the next subsection.
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Another model inspired by the knowledge of the gene as a se-
quence of nucleotides is the “infinitely many sites” model, described
in detail in these lectures by Dr Joyce. However, some aspects of
this model are discussed in these notes also.

In this section we consider both population and sample properties
of the “infinitely many alleles” versions of the Wright–Fisher, the
Cannings and the Moran models. The discussion of the Wright–
Fisher model is more extensive than that for the Cannings model.
This arises for two reasons. The first is that calculations for the
Wright–Fisher model are comparatively straightforward, and the
second is that results for this model can be taken over almost directly
for the Cannings model, with an appropriate change in the definition
of the parameter θ arising in all the formulas found, as hinted at the
end of the previous section.

Results for the Wright–Fisher and the Cannings infinitely many
alleles models are usually approximations. By contrast, the infinitely
many alleles Moran model allows many exact calculations.

Mutation is intrinsic to all infinitely many alleles models, but the
nature of the new mutants is different from anything assumed so far,
the key difference being that all mutant genes are assumed to be of a
new allelic type, not currently or previously seen in the population.
This has several important implications that are discussed in detail
below.

Some remarks about molecular population genetics

Before discussing infinitely many alleles models, we make some com-
ments about molecular population genetics, since the statistical the-
ory associated with molecular population genetics is carried out in
terms of the infinitely many alleles, and also the infinitely many
sites, models.

First, the theory considered so far in these notes concerns alleles
given labels such as “A1”, “A2”, etc. These are simply arbitrary no-
tations. However, at the molecular level, the actual genetic material
is known, so that the nucleotide symbols a, g, c and t refer to actual
rather than arbitrary entities. The fact that the molecular theory
thus concerns ultimate and real entities is of great importance, and
allows evolutionary inferences not possible with classical population
genetics theory.
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These inferences are based on samples, and thus properties of
samples of genetic material are considered often in the following
notes. These inferences relate to retrospective rather than prospec-
tive evolutionary questions. The theory given so far in these notes
is largely prospective – given numerical values for various genetic
parameters, the theory shows what the evolution (or in a stochastic
model the likely evolution) of a population will be. By contrast, the
aim of the retrospective theory is to describe the course that evolu-
tion has taken, and thus to gain empirical insight into evolutionary
questions. This change of viewpoint leads to the use of statistical
methods, analyzing current genetical data. The current emphasis on
statistical inference procedures is the most important new direction
in population genetics theory. Knowledge of the actual genetical ma-
terial is essential for these inferences, and the entire retrospective
analysis must therefore be carried out in the framework of molecular
population genetics.

To help with the discussion of inferential properties through the
use of samples, the sample size is denoted in these notes by n (genes)
and the population size by N . Since a diploid population is assumed
the number of genes in the population is 2N. Because we often com-
pare sample and population properties, we sometimes write suffices
“n” and “2N” when appropriate (for example Kn and K2N to dis-
tinguish between the number of different alleles in a sample and in
the population).

The Wright–Fisher infinitely many alleles model

Population properties

The Wright–Fisher infinitely many alleles model follows the generic
binomial sampling characteristic of all Wright–Fisher models. The
nature of the mutation mechanism, as stated above, implies that if
the mutation rate (always to new allelic types) is u, and if in genera-
tion t there areXi(t) genes of allelic type Ai (i = 1, 2, 3, . . .), then the
probability Prob{X0(t+1), X1(t+1), X2(t+1), . . . | X1(t)X2(t), . . .}
that in generation t+ 1 there will be Xi(t+ 1) genes of allelic type
Ai, together with X0(t+ 1) new mutant genes, all by assumption of
different and novel allelic types, is

(2N)!

ΠXi(t+ 1)!
Ππ

Xi(t+1)
i , (119)
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where π0 = u and πi = Xi(t)(1− u)/(2N), i = 1, 2, 3, . . . .

This model differs fundamentally from previous mutation models
(which allow reverse mutation) in that since each allele will sooner
or later be lost from the population, there can exist no nontrivial
stationary distribution for the frequency of any allele. Nevertheless
we are interested in stationary behavior, and it is thus important to
consider what concepts of stationarity exist for this model. To do
this we consider delabeled configurations of the form {a, b, c, . . .},
where such a configuration implies that there exist a genes of one
allelic type, b genes of another allelic type, and so on. The specific
allelic types involved are not of interest. The possible configurations
can be written down as {2N}, {2N − 1, 1}, {2N − 2, 2}, {2N −
2, 1, 1}, . . . , {1, 1, 1, . . . 1} in dictionary order. Here, for example, the
configuration {2N} is that for which all 2N genes in the population
are of the same (unspecified) allelic type, the configuration {2N −
1, 1} is that for which 2N−1 genes in the population are of the same
(unspecified) allelic type and the remaining gene is of some other
type, and the configuration {1, 1, 1, . . . 1} is that for which all 2N
genes in the population are of different allelic types. The number
of such configurations is p(2N), the number of partitions of 2N into
positive integers. For small values of N values of p(2N) are given
by Abramowitz and Stegun (1965, Table 24.5), who also provide
asymptotic values for large N . It is clear that (119) implies certain
transition probabilities from one configuration to another. Although
these probabilities are extremely complex and the Markov chain of
configurations has an extremely large number of states, nevertheless
standard theory shows that there exists a stationary distribution of
configurations. Unfortunately, no explicit expression is known for
this stationary distribution, and we now discuss some partial and
approximate results.

We consider first the probability that two genes drawn at random
from the population at stationarity are of the same allelic type. For
this to occur neither gene can be a mutant and, further, both must
be descended from the same parent gene (probability (2N)−1) or
different parent genes which were of the same allelic type. Writing

F
(t)
2 for the desired probability in generation t, we get

F
(t+1)
2 = (1− u)2

(
(2N)−1 + {1− (2N)−1}F (t)

2

)
. (120)
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At stationarity F
(t+1)
2 = F

(t)
2 = F2 and thus

F2 = {1− 2N + 2N(1− u)−2}−1 ≈ (1 + θ)−1, (121)

where, as as is standard for Wright–Fisher models, θ is defined as
4Nu. This is identical to the limiting (K → ∞) value in (118). In
view of the fact that there is no concept of the stationary distribution
for the frequency of any allele in the infinitely many alleles case, this
fact is perhaps surprising.

We consider further calculations of this kind when discussing
sample properties.

We now turn to eigenvalue calculations. Equation (120) can be
rewritten in the form

F
(t+1)
2 − F

(∞)
2 = (1− u)2{1− (2N)−1}{F (t)

2 − F
(∞)
2 }, (122)

and this implies that (1 − u)2{1 − (2N)−1} is an eigenvalue of the
Markov chain configuration process discussed above. A similar argu-
ment using (135) shows that a second eigenvalue of the configuration
process is (1−u)3{1− (2N)−1}{1−2(2N)−1}. Equations (137) and
(141) suggest that (1−u)4{1−(2N)−1}{1−2(2N)−1}{1−3(2N)−1}
is an eigenvalue of multiplicity 2. It is found more generally that

λi = (1− u)i{1− (2N)−1}{1− 2(2N)−1} · · · {1− (i− 1)(2N)−1}
(123)

is an eigenvalue of the configuration process matrix and that its
multiplicity is p(i) − p(i − 1), where p(i) is the partition number
given above. This provides a complete listing of all the eigenvalues.

We consider next an approximation for the mean number of al-
leles existing in the population at any time. Any specific allele Am

will be introduced into the population with frequency (2N)−1, and
after a random number of generations will leave it, never to re-
turn. The frequency of Am is a Markovian random variable with
transition matrix given in (63), with ψi defined immediately below
(63). There will exist a mean time E(T ), measured in generations,
that Am remains in the population. The mean number of new al-
leles to be formed each generation is 2Nu, and the mean number
to be lost each generation through mutation and random drift is
E(K2N)/E(T ), where E(K2N) is the mean number of alleles existing
in each generation in the entire population. It follows, by balancing
the mean number of alleles gained each generation with the mean
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number lost, that at stationarity,

E(K2N) = 2NuE(T ). (124)

An approximation to E(T ) is given in (72), and together with (124)
this gives

E(K2N) ≈ θ +

1∫
(2N)−1

θx−1(1− x)θ−1 dx. (125)

A more detailed approximation, again using an ergodic argument,
is possible. If E(K2N(x1, x2)) is the mean number of alleles present
in the population with frequency in any interval (x1, x2) ((2N)−1 ≤
x1 < x2 ≤ 1), then from (71)

E(K2N(x1, x2)) ≈
x2∫

x1

θx−1(1− x)θ−1 dx. (126)

The function
φ(x) = θx−1(1− x)θ−1, (127)

which is the integrand in (126), is called the “frequency spectrum”of
the process considered, and several important conclusions can be
found conveniently from it, as shown below. Ignoring small-order
terms, it has the (equivalent) interpretations that, to a close ap-
proximation, the mean number of alleles in the population whose
frequency is in (x, x+ δx), and also the probability that there exists
an allele in the population whose frequency is in this range, is, for
small δx, equal to θx−1(1− x)θ−1δx.

The form of the frequency spectrum also shows that when θ is
small, the most likely situation to arise at any time is that where
one allele has a high frequency and the remaining alleles are all at a
low frequency. This occurs for two reasons. The first of these is his-
torical: Different alleles enter the population an different times, and
an “older” allele has had more time to reach a high frequency than
a “younger” allele. Second, imbalances in allelic frequencies arise
through stochastic fluctuations, as in the M -allele model as dis-
cussed above. This imbalance agrees qualitatively with that found
surrounding (118) for the M -allele model.

A final result obtained from the frequency spectrum is the fol-
lowing. Practical population geneticists have long been interested in
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the degree of genetic variation present in a population. In practice
there will almost always be some variation, so that in practice what
is meant is “non-trivial variation”, or “non-trivial polymorphism.”
The classic definition of such a polymorphism, given by Harris (1980,
p. 331), is that a locus is polymorphic if the population frequency
of the most frequent allele in the population of interest is no more
than 0.99. Thus in this sense a population is not polymorphic if the
frequency of any allele exceeds 0.99. From the frequency spectrum,
the probability of polymorphism is

1− θ

1∫
0.99

x−1(1− x)θ−1 dx

≈ 1− θ

1∫
0.99

(1− x)θ−1 dx

= 1− (0.01)θ. (128)

For θ = 0.1, for example, this probability is only about 0.37. How-
ever, for larger values of θ, for example for θ > 1, this probability
exceeds 0.99.

If the Harris value 0.01 in this definition is replaced by the general
value δ, for some small δ, then (128) is replaced by the more flexible
value

Probability of population polymorphism = 1− δθ. (129)

Several results for the infinitely many alleles model can be ob-
tained directly from two-allele theory. For example, we may wish
to find the mean number of generations until all alleles currently
existing in the population have been replaced by new alleles, not
currently existing in the population. This may be found from two-
allele theory by identifying all currently existing alleles with the
allele A1, initially having current frequency p = 1 in the popula-
tion, and seeking the mean number of generations until loss of this
allele. This expression is given in (73). A slightly more accurate
approximation is

4N
2N∑
j=1

{j(j + θ − 1)}−1 generations. (130)
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The individual terms in (130) have an important interpretation re-
garding the past history of the population. This will also be dis-
cussed by Dr Joyce.

As discussed previously, the case θ = 2 is of some interest. For
this value of θ the expression in (130) reduces to

4N − 2 (131)

generations. We return to this value later (see the discussion follow-
ing (295)).

Returning to the case of a single allele A1 with initial frequency
1, a calculation generalizing that leading to (130) can be made for
selective models. It has been claimed that most gene fixation pro-
cesses in evolution concern very slightly deleterious alleles. Consider
then an infinitely many alleles model in which a given allele A1 has
initial frequency 1. We suppose that A1A1 individuals have fitness
1, that all A1Aj heterozygotes have fitness 1− s, and that all other
genotypes have fitness 1 − 2s. The mean time until one or other
deleterious allele fixes must exceed the mean time until loss of A1,
and the latter mean time may be found immediately from two-allele
theory using a generalization of (66). If α = |2Ns| this mean time
is, in generations,

T (1) = 2N

1∫
0

t(x) dx, (132)

where

t(x) = x−1(1− x)θ−1 exp(2αx)

x∫
0

(1− y)−θ exp(−2αy) dy. (133)

This mean time is extremely large even for moderate values of α,
increasing (for θ = 1) from 40N generations for α = 2.5 to 5×106N
generations for α = 10. We conclude that the evolutionary role of
these recurrent deleterious mutants is negligible if α is 5 or more.

Although the theory is by no means clear, it is plausible that to a
first approximation, all the results given in this section continue to
apply in more complicated Wright–Fisher models, involving perhaps
two sexes or geographical structure, if the parameter θ is defined as

θ = 4Neu, (134)
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where Ne is one or other version of the effective population size (a
concept that is discussed later).

Sample properties

We can think of the result in (121) as a property of a sample of two
genes. It is possible to extend the arguments leading to this result
to consider samples of size three, four, and so on. Consider then the

probability F
(t+1)
3 that three genes drawn at random in generation

t + 1 are of the same allelic type. These three genes will all be
descendants of the same gene in generation t, (probability (2N)−2),
of two genes (probability 3(2N − 1)((2N)−2)) or of three different
genes (probability (2N −1)(2N −2)((2N)−2)). Further, none of the
genes can be a mutant, and it follows that

F
(t+1)
3 = (1−u)3(2N)−2

(
1 + 3(2N − 1)F

(t)
2 + (2n− 1)(2N − 2)F

(t)
3

)
.

(135)

At equilibrium F
(t+1)
3 = F

(t)
3 = F3, and rearrangement in (135)

yields
F3 ≈ 2(2 + θ)−1F2 ≈ 2!/[(1 + θ)(2 + θ)]. (136)

Continuing in this way we find

F (t+1)
n = (1− u)n[(2N − 1)(2N − 2) · · · (2N − n+ 1)(2N)1−nF (t)

n

+ terms in F
(t)
n−1, . . . , F

(t)
2 ] (137)

and from this, that for small values of n,

Fn ≈
(n− 1)!

(θ + 1)(θ + 2) · · · (θ + n− 1)
. (138)

We can also interpret Fn as the probability that a sample of n genes
contains only one allelic type, or, in other words, that the sample
configuration is {n}.

This conclusion may be used to find the probability of the sample
configuration {n−1, 1}. The probability that in a sample of n genes,
the first n− 1 genes are of one allelic type while the last gene is of
a new allele type is Fn−1 − Fn. The probability we require is, for
n ≥ 3, just n times this, or

Prob{n−1, 1} = n{Fn−1−Fn} ≈ n(n−2)!θ/[(1+θ)(2+θ) · · · (n−1+θ)].
(139)
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For n = 2 the required probability is

Prob{1, 1} ≈ θ/(1 + θ). (140)

The probabilities of other configurations can built up in a similar

way. We illustrate this by considering the probability F
(t+1)
2,2 that, of

four genes drawn at random in generation t+1, two are of one allelic
type and two of another. Clearly none of the genes can be a mutant,
and furthermore they will be descended from four different parent
genes of configuration {2, 2}, from three different parent genes of
configuration {2, 1}, the singleton being transmitted twice, or from
two different parent genes, both transmitted twice. Considering the
probabilities of the various events, we find

F
(t+1)
2,2 = (1− u)4(2N)−3

(
(2N − 1)(2N − 2)(2N − 3)F

(t)
2,2

+ 2(2N − 1)(2N − 2)F
(t)
2,1 + 3(2N − 1)F

(t)
1,1

)
. (141)

Retaining only higher-order terms and letting t→∞, we obtain

F2,2 ≈ (3 + θ)−1F2,1 = 3θ/
(
(1 + θ)(2 + θ)(3 + θ)

)
. (142)

Continuing in this way we find an approximating partition proba-
bility formula for a sample of n of genes, where is is assumed that
n << N . This probability can be presented in various ways. Per-
haps the most useful formula arises if we introduce the random vari-
ables A1, A2, . . . , An, where Aj is the number of alleles that arise
exactly j times in the sample. It is necessary that

∑
j jAj = n, and

we make this restriction from now on. If we introduce the vector
A = (A1, A2, . . . , An), we find that

Prob(A = a) =
n! θ

∑
aj

1a12a2 · · · nan a1! a2! · · · an!Sn(θ)
. (143)

In this expression, a = (a1, a2, . . . , an),
∑

j jaj = n and Sn(θ) is
defined by

Sn(θ) = θ(θ + 1)(θ + 2) · · · (θ + n− 1). (144)

The expression (143) was derived by Ewens (1972) and Karlin and
McGregor (1972).

We denote
∑
Aj, the (random) number of different allelic types

seen in the sample, by Kn, and
∑

j aj, the corresponding number of
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alleles observed in a given sample, by kn. By suitable summation in
(143) the probability distribution of the random variable Kn may
be found as

Prob (Kn = kn) = |Sk
n|θk/Sn(θ), (145)

where |Sk
n| is the coefficient of θk in Sn(θ). Thus |Sk

n| is the absolute
value of a Stirling number of the first kind. From (145), the mean
of Kn is

E(Kn) =
θ

θ
+

θ

θ + 1
+

θ

θ + 2
+ · · ·+ θ

θ + n− 1
, (146)

the variance of Kn is

var(Kn) = θ
n−1∑
j=1

j

(θ + j)2
, (147)

and the probability that Kn = 1 is

(n− 1)!

(θ + 1)(θ + 2) · · · (θ + n− 1)
. (148)

This agrees, as it must, with the expression in (138).
A formula equivalent to (143) is the following. Suppose that in

the sample we observe kn different allelic types. We label these in
some arbitrary order as types 1, 2, . . . , kn. Then the probability that
Kn = kn and also that with the types labeling in the manner chosen,
there are n1, n2, . . ., nkn genes respectively observed in the sample
of these various types, is

n!θkn

kn!n1n2 · · ·nknSn(θ)
. (149)

The frequency spectrum (127) can be used to confirm various
sampling theory results. For example, an allele whose population
frequency is x is observed in a sample of size n with probability
1− (1− x)n. From this and (126) it follows that the mean number
of different alleles observed in a sample of size n is approximately

1∫
0

{1− (1− x)n}θx−1(1− x)θ−1 dx, (150)
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and the value of this expression is equal to that given in (146).
As a second example, the probability that only one allele is ob-

served in a sample of n genes can be found from the frequency
spectrum as

θ

1∫
0

xn{x−1(1− x)θ−1} dx

= (n− 1)!/
(
(1 + θ)(2 + θ) · · · (n− 1 + θ)

)
and this agrees with the expression in (138). More complex formulas
such as (143) can be re-derived using multivariate frequency spectra,
but we do not pursue the details.

The Cannings infinitely many alleles model

The reproductive mechanism in the non-overlapping generations
Cannings infinitely many alleles model follows that of the general
principles of the Cannings two-allele model. That is, the model
allows any reproductive scheme consistent with the exchangeability
and symmetry properties of the two-allele model. The mean number
of offspring genes from any “parental” gene is 1, and the variance
of the number of offspring genes is σ2, necessarily the same for each
parental gene. The mutation assumptions are as described above,
in particular that all mutant offspring genes are assumed to be of
novel allelic types.

Many of the results of the Wright–Fisher infinitely many alleles
model apply for the Cannings model, at least to a close approxi-
mation, provided that the parameter θ, arising in many for-
mulas associated with the Wright-Fisher model, is replaced
throughout by θ/σ2. Therefore we do not explore the Cannings
model further, and instead use Wright–Fisher formulae, with this
change of definition of θ, when considering the Cannings model.

The Moran infinitely many alleles model

The Moran infinitely many alleles model is the natural extension
to the infinitely many alleles case of the Moran two alleles model.
Haploid individuals, which we may identify with genes, are created
and lost through a birth and death process, as in the two-alleles
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case, with the standard infinitely many alleles model assumptions
that an offspring gene is a mutant with probability u and that any
new mutant is of an entirely novel allelic type.

The stochastic behavior of the frequency of any allelic type in the
population is then governed by (105), implying (as for the Wright-
Fisher and Cannings models) that there can be no concept of sta-
tionarity of the frequency of any nominated allelic type. On the
other hand, as for those models, there will exist a concept of the
stationary distribution of allelic configurations. The possible con-
figurations of the process are the same as those for the Wright-Fisher
and Cannings models, but for the Moran model an exact population
probability can be given for each configuration, both in the popu-
lation as a whole and also in a sample of any size taken from the
population.

Population properties

We first consider the population as a whole. Suppose that Bj

(j = 1, 2, . . . , 2N) is the number of allelic types with exactly j

representative genes in the population, so that
∑2N

j=1 jBj = 2N .
The quantity Bj is the population analogue of the sample number
Aj in (143). We introduce the vectors B = (B1, B2, . . . , B2N) and

b = (b1, b2, . . . , b2N), where
∑2N

j=1 jbj = 2N. The exact stationary
distribution of the population configuration process is

Pr(B = b) =
(2N)! θ

∑
bj

1b12b2 · · · (2N)b2N b1!b2! · · · b2N !S2N(θ)
. (151)

Here S2N(θ) is defined by replacing n by 2N in (144), and θ is defined
for this model by

θ = 2Nu/(1− u). (152)

This is a different definition of θ than that applying for
the Wright–Fisher model, and is always to be used as the
definition of θ when referring to the Moran model.

The expression on the right-hand side of (151) is of exactly the
same form as (143), with n replaced by 2N and Aj by Bj. Since
equation (151) is an exact one for the Moran model, several of the
calculations arising from (143) are exact for the Moran model pop-
ulation. For example, the distribution of the number K2N of allelic
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types in the population is given exactly by (145), with n replaced
by 2N. Also, from (148), the probability that K2N = 1 is, exactly,

(2N − 1)!

(1 + θ)(2 + θ) · · · (2N − 1 + θ)
. (153)

Further, the mean of K2N is given exactly by (146), with n replaced
by 2N and the variance K2N is

var(K2N) = θ

2N−1∑
j=1

j

(θ + j)2
. (154)

In all of these expressions, it must be kept in mind that the definition
of θ for the Moran model (namely 2Nu/(1−u)) differs from that of
the Wright-Fisher model (namely 4Nu), so that the formal identity
of expressions in the two models is perhaps misleading.

An exact expression is available for the Moran model (discrete)
frequency spectrum, for which (127) gives the (continuous) approx-
imate Wright–Fisher model formula. To find this we consider first
the “two-allele” model (105). In the infinitely many alleles case we
think of A1 as a new arisen allele formed by mutation and A2 as all
other alleles. Standard theory can be used to find the mean number
µ(T ) of birth and death events before the certain loss of A1 from
the population. This is

µ(T ) = (2N + θ)
2N∑
j=1

j−1

((
2N

j

)(
2N + θ − 1

j

)−1
)
, (155)

The form of ergodic argument that led to (125) shows that at sta-
tionarity, the mean of the number K2N of different allelic types
represented in the population is uµ(T ), which is

θ
2N∑
j=1

j−1

((
2N

j

)(
2N + θ − 1

j

)−1
)
, (156)

where here and throughout we use the standard gamma function
definition(

M

m

)
=

Γ(M + 1)

m!Γ(M −m+ 1)
=

M(M − 1) · · · (M −m+ 1)

m!
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for non-integer M. The expression (156) provides the further infor-
mation that the typical jth term gives the stationary mean number
of alleles arising with j representing genes in the population at any
time. In other words, the exact frequency spectrum for the Moran
model is

θ j−1

((
2N

j

)(
2N + θ − 1

j

)−1
)
, j = 1, 2, . . . , 2N. (157)

A standard asymptotic formula for the gamma function for large N
shows the parallel between this exact expression with the continuous
Wright-Fisher frequency spectrum (127).

Various special cases of (157) are of interest. For example, when
θ = 1, (157) simplifies to j−1, in which form the parallel with the
Wright-Fisher approximation (127) is obvious. However, the differ-
ent formulae for θ for the two models should be kept in mind when
this comparison is made.

Two of the above expressions are of independent interest. First,
the expression (155) has the further interpretation that its typical
term is the mean number of birth-and-death events for which there
are exactly j copies of the allele in question before its loss from the
population. It is interesting to evaluate the expression in (155) for
specific values of θ. When θ = 2, it is about 2N log(2N) birth and
death events, or about log(2N) “generations”. The corresponding
approximation for the Wright–Fisher model, found from (66), is also
log(2N) generations, but again this formal equality is misleading
because of the different definitions of θ in the two cases.

Second, the expression (156) simplifies to

θ

θ
+

θ

θ + 1
+

θ

θ + 2
+ · · ·+ θ

θ + 2N − 1
.

This is identical to the expression given in (146), with n replaced
by 2N , as we know it must be.

Many further exact results for the Moran model are available.
Here are several.

First, if at any time there is only one allele in the population,
we say that that allele is “quasi-fixed” in the population. (We do
not use the expression “fixed”, since in an infinitely many alleles
model this allele will eventually be lost from the population.) The
probability that a new mutant eventually becomes quasi-fixed can
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be found as follows. Call the allelic type of the new mutant A1

and group together all other genes as “A2” genes. Then standard
continuant Markov chain theory shows that the probability that a
new mutant allele eventually becomes quasi-fixed in the population
is C−1, where

C =
2N−1∑
j=0

(
2N + θ − 1

j

)((2N − 1

j

))−1

. (158)

This is a different probability than the probability that, at any
specified time, the population is “quasi-fixed” for some unspecified
allele. This latter probability is given by the j = 2N term in the
exact Moran frequency spectrum (157), namely

θ

2N

((2N + θ − 1

2N

))−1

, (159)

or, more simply,

(2N − 1)!

(1 + θ)(2 + θ) · · · (2N − 1 + θ)
. (160)

To illustrate the difference between the probability defined by (158)
and the probability defined by (160), when θ = 1 the probability of
quasi-fixation of a specified new mutant allele is, from the expression
(158),

1

2N

(
1 +

1

2
+

1

3
+ · · ·+ 1

2N

)−1
(161)

while the quasi-fixation probability of an unspecified allele, given by
the expression (160), is 1/(2N). These two expressions differ by a
multiplicative factor of

1 +
1

2
+

1

3
+ · · ·+ 1

2N
, (162)

and it is not a coincidence that this is the mean number of alleles
in the population at any time.

Second, it is immediate that the probability that a gene drawn at
random from the population is of an allelic type represented j times
in the population is found by multiplying the expression in (157) by
j/(2N). This gives

θ

2N

((
2N

j

)(
2N + θ − 1

j

)−1
)

(163)
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for this probability. We check that the sum of this expression over
j = 1, 2, . . . , 2N is 1.

Third, (156) allows an exact calculation of the probability of
population polymorphism, as defined by Harris. Any allele having
a frequency exceeding 0.99 must be the most frequent allele in the
population, and at most one allele can have such a frequency. Thus
the probability that the most frequent allele in the population has
frequency exceeding 0.99 is the mean number of alleles with fre-
quency exceeding 0.99. Taking 0.99(2N) as an integer M, (156)
shows that the Harris probability of polymorphism is

1− θ
2N∑

j=M+1

j−1

((
2N

j

)(
2N + θ − 1

j

)−1
)
. (164)

This is close to 1 − (0.01)θ, the approximate value found above
for the Wright–Fisher model using the frequency spectrum (see the
expression in (128)). As with other such comparisons, this apparent
similarity is misleading because of the different definitions of θ in
the two models.

The final result concerns the mean number of birth and death
events until all alleles present in the population at any time are lost.
This is the Moran model analogue (once an adjustment is made
between generations and birth-death events) for the mean number of
generations until allele current alleles in a population are lost in the
Wright-Fisher model, an approximation for which is given in (73).
In the case of the Moran model an exact calculation is available,
namely that the required mean number of birth and death events is

2N(2N + θ)(θ − 1)−1

2N∑
j=1

j−1

(
1−

(
2N

j

)(
2N + θ − 1

j

)−1
)
.

(165)
A formula different from (165), found by applying l’Hôpital’s rule,
applies for the case θ = 1. An excellent approximation to this value
is given in (111).

In the case θ = 2, the expression (165) gives, exactly, 8N2(N +
1)/(2N + 1). This is very close to the approximation 4N2 birth and
death events given in (113). This can be thought of as corresponding
to 2N “generations”, which can be compared to the approximate
value 4N for the Wright–Fisher process given in (75). Note the
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“factor of two” difference between these values: we return to this
factor later.

There are several further comments to make about (165). First,
The typical (jth) term in (165) is the mean number of birth and
death events for which there are exactly j genes present of the var-
ious original alleles in the population before the eventual loss of all
these alleles. Thus the expression (165) gives more information than
might otherwise be thought.

Second, although the identity is not immediately obvious, the
expression in (165) is identical to the expression

2N(2N + θ)
2N∑
j=1

1

j(j + θ − 1)
. (166)

The expression in (166) may be written equivalently as

2N∑
j=1

1

vj + wj

, (167)

where

vj =
ju

2N
, wj =

j(j − 1)(1− u)

(2N)2
. (168)

Coalescent theory explains why the mean age of the oldest allele can
be expressed in the form defined by (167) and (168). Again, this
will be discussed by Dr Joyce.

We next consider the mean number of birth-death events until all
alleles present in the population at any time are lost. The value given
in (130) for the Wright–Fisher model for this mean is a diffusion
approximation. In the case of the Moran model an exact calculation
can be made by using two-allele theory, and regarding all the alleles
existing in the population at a given time as A1, and that initially
there are 2NA1 genes in the population. Watterson (1976) found
that the required mean number of birth-death events is

2N(2N + θ)(θ− 1)−1

2N∑
j=1

j−1
(
1−

(
2N

j

)(
2N + θ − 1

j

)−1)
, (169)

(A formula different from (169), found by applying l’Hôpital’s rule,
applies for the case θ = 1.) In the case θ = 2 (169) gives, exactly,
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8N2(N + 1)/(2N + 1), or about 4N2, birth-death events. This can
be thought of as corresponding to 2N “generations”. This differs
from the value in (131) for the Wright–Fisher model, and we note
again the “factor of two” difference between the two models.

We make several further comments about (169). First, as with
the corresponding result for the Wright–Fisher model, we may think
of (169) as providing, in this case exactly, the mean age of the oldest
allele in the population. Second, the typical (jth) term in (169) is
the mean number of birth-death events for which there are exactly j
genes present of the various original alleles alleles in the population
before the eventual loss of all these alleles. Thus the expression
(169) gives more information than might otherwise be thought.

The exact frequency spectrum (156) provides two results almost
immediately of interest in this section. The first uses the concept of
size-biased sampling, discussed in more detail later. In the Moran
model the probability that an individual drawn at random is of an
allelic type having exactly j copies in the population is found by
multiplying the jth term in (156) by j/(2N). This gives a value of

θ(2N)−1
((2N

j

)(
2N + θ − 1

j

)−1)
. (170)

for this probability. This calculation is of use when “age” properties
of the alleles in the population are considered.

Second, (156) allows an exact calculation of the “Harris” proba-
bility of population polymorphism, as defined in (128). Any allele
having a frequency exceeding 0.99 must be the most frequent allele
in the population, and at most one allele can have such a frequency.
Thus the probability that the most frequent allele in the population
has frequency exceeding 0.99 is the mean number of alleles with
frequency exceeding 0.99. Taking 0.99(2N) as an integer J, (156)
shows that the probability of polymorphism is

1− θ
2N∑

j=J+1

j−1
((2N

j

)(
2N + θ − 1

j

)−1)
. (171)

This is close to 1 − (0.01)θ, the approximate value found above
for the Wright–Fisher model using a diffusion approximation. As
with other such calculations, this apparent similarity is misleading
because of the different definition of θ in the two models.
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Many further exact and elegant results can be found for the
Moran model, but since our main interest is in samples of genes
from a population rather than the entire population itself, we do
not consider these further.

Sample properties

We turn now to sample properties in the Moran model. Suppose
now a sample of n genes is taken, without replacement, from a pop-
ulation obeying the infinitely many alleles Moran model. Perhaps
surprisingly, all the sampling results given above as approximations
for the Wright-Fisher model are exactly correct for this sample, pro-
vided of course that θ is interpreted as 2Nu/(1− u). In particular,
the basic formula (143) applies exactly for the infinitely many alle-
les Moran model. This implies that the formulas (145), (146), (147)
and (148), all of which derive from (143), are exactly correct for that
model.

A most important concept concerning a sample of genes is that
of a partition structure (Kingman, (1978)). There should be no
particular significance attached to the sample size n, and we can
regard a sample of size n genes as one arising from a sample of size
n + 1, one of which was accidently lost. We reasonably requires a
consistency of formulae for the two sample sizes. To formalize this
we denote the left-hand side in the partition formula (143) as as
Pn(a1, a2, . . .) The method of arriving at a sample of n genes as just
described then implies that this must be equal to

a1 + 1

n+ 1
Pn+1(a1+1, a2, . . .)+

n+1∑
j=2

j(aj + 1)

n+ 1
Pn+1(a1, .., aj−1−1, aj+1, . . .).

(172)
The right-hand side in (143) does satisfy this requirement, but King-
man raised the much more general question: how may one charac-
terize probability structures satisfying (172)? He called structures
having this property “partition structures”, and showed that for all
such structures of interest in genetics, Pn(a1, a2, . . .) could be repre-
sented in the form

Pn(a1, a2, . . .) =

∫
Pn(a1, a2, . . . |x)µ(dx), (173)
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where Pn(a1, a2, . . . |x) is a complicated sum of multinomial proba-
bilities whose exact form we do not write down. Kingman called µ
the “representing measure” of Pn(a1, a2, . . .) and found that for the
partition formula (143) this representing measure is the so called
“Poisson–Dirichlet” distribution - see Kingman (1975) for the prop-
erties of this distribution.

The consistency requirement (172) is a natural one for a sample
of genes. We shall, however, find a perhaps more important inter-
pretation for this requirement when considering the past history of
the population from which the sample was taken.

Kingman also took up the question of “non-interference”, de-
fined by the requirement that if a gene is taken at random from the
sample, and all r genes of its allelic type then removed from the
sample, the partition probability structure of the remaining n − r
genes should be the same as that of an original sample of n − r
genes. Non-interference implies that Pn(a1, . . . , ar, . . .) must satisfy
the requirement

rar

n
Pn(a1, . . . , ar, . . .) = c(n, r)Pn−r(a1, . . . , ar−1, . . .), (174)

where c(n, r) does not depend on a1, a2, . . . Kingman then showed
that of all partition structures of interest in genetics, the only one
also satisfying the requirement (174) is (143).

Further exact Moran model results relating to “time” and “age”
properties, both for the entire population and for a sample of genes
from the population, will be discussed by Dr. Joyce.

Complications and the effective population size

Introduction

All the theory described above (and also that described later) makes
a large number of assumptions, genetical, modeling and demographic.
The main genetical assumption is that there is no selection involved
between the alleles that we consider. Clearly, and especially in light
of the Darwinian paradigm, this means that a very large propor-
tion of population genetics theory, that relating to selection, is not
considered. Another important aspect of reality that is ignored is
the existence, for the great majority of species of interest to us, of



62

two sexes and the diploid nature of the individuals in those pop-
ulations. From the modeling point of view, the three models con-
sidered (Wright-Fisher, Cannings and Moran) cannot be expected
to describe accurately any real-life population, even though they do
provide some insights into the evolutionary genetic behavior of real
populations. Finally, many demographic features, such as the geo-
graphical dispersion of a population and changes over time in the
size of the population of interest, have been ignored.

The concept of the effective population size is meant to address
some of these deficiencies, and in this section we define this concept
and examine some of its properties.

Three concepts of the effective population size

Even though the “simple” Wright-Fisher model is far less plausible
than several other available models as a description of biological
reality, it has, perhaps for historical reasons, assumed a central place
in population genetics theory. This model has three properties that
relate to the population size:

(i) its maximum non-unit eigenvalue λmax is 1− (2N)−1,

(ii) the probability π2 that two genes taken at random are descen-
dants of the same parent gene is (2N)−1,

(iii) var{x(t + 1) | x(t)} = x(t){1 − x(t)}/(2N), where x(t) is the
fraction of A1 genes in generation t.

Thus the population size N in the simple Wright-Fisher model obeys
the equations N = 1

2
(1− λmax)

−1, N = (2π2)
−1 and

N =
x(t){1− x(t)}

2 var{x(t+ 1) | x(t)}
.

In view of these properties it is perhaps natural, if the Wright–
Fisher model (35) is to be used as a standard, to define the various
effective population sizes in diploid models that are more compli-
cated and realistic then (35) in the following way:

eigenvalue effective population size = 1
2
(1− λ∗max)

−1, (175)

inbreeding effective population size = (2π∗2)
−1, (176)

variance effective population size =
x(t){1− x(t)}

2 var∗{x(t+ 1) | x(t)}
. (177)
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We write these for convenience as N
(e)
e , N

(i)
e and N

(v)
e respectively.

Here λ∗max is now defined as the largest nonunit eigenvalue of the
transition matrix of the complicated model considered and π∗2 is
now defined as the probability, in this model, that two genes taken
at random in any generation are descendants of the same parent
gene. Similarly, var∗{x(t + 1)} is the conditional variance of the
frequency of A1 in generation t+ 1 in this model, given the value of
this frequency in generation t.

A fourth concept of effective population size, namely the mu-
tation effective size, is also possible, but we do not consider this
concept here. A more general concept of effective population size is
the “coalescent” effective population size. This will be discussed by
Dr. Krone.

Application to the Cannings model

In this section we consider the application of the effective population
size concept for the Cannings model, and limit attention for the
moment to those versions of the model where generations do not
overlap. Equations (84) and (175) show immediately that for these

models, the eigenvalue effective population size N
(e)
e is given by

N (e)
e =

(
N − 1

2

)
/σ2, (178)

where σ2 is the variance in the number of offspring genes from any
given gene. Equations (86) and (177) show that the variance effec-

tive population size N
(v)
e is given by

N (v)
e =

(
N − 1

2

)
/σ2. (179)

A value for N
(i)
e can be found in the following way. Suppose that

the ith gene in generation t leaves Mi offspring genes in generation
t+1, (

∑
Mi = 2N). Then the probability, given M1, . . . ,M2N , that

two genes drawn at random in generation t + 1 are descendants of
the same gene is

2N∑
i=1

Mi(Mi − 1)/{2N(2N − 1)}. (180)

The probability π∗2 is the expected value of this random variable.
Now Mi has mean unity and variance σ2, so that, on taking expec-
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tations, π∗2 = σ2/(2N − 1). From this,

N (i)
e =

(
N − 1

2

)
/σ2. (181)

It follows from these various equations that for the Cannings model,
all three effective population sizes are equal.

One application of this conclusion is the following. If leading
terms only are retained, all three definitions of the effective pop-
ulation size in the Cannings model are N/σ2. From the remarks
surrounding (134), it is plausible that the various Wright–Fisher
infinitely many alleles model results apply for the non-overlapping
generation Cannings model if θ is defined wherever it occurs by
4Neu. That is, to a close approximation, we define θ for the Can-
nings model by

θ = 4Nu/σ2. (182)

As stated earlier, the definition of θ given in (182) is to be used
whenever the Cannings model is discussed.

Application to the Moran model

The three definitions of the effective population size given above are
not appropriate for models where generations overlap. If we write
Ne for any one of the effective population sizes defined in above, it
seems reasonable for such models to define the effective population
size as Nek/(2N), where k is the number of individuals to die at
each time unit. Since k = 2N for models where generations do not
overlap, this leaves the definitions of the effective population size
unchanged for such models. For the Moran model, where k = 1,
this convention yields

N (e)
e = N (i)

e = N (v)
e = 1

2
N. (183)

The equations show that the effective population size in the Moran
model is half that in the Wright–Fisher model. We now discuss the
reason for this.

Arguments parallel to those leading to (47) show that if two al-
leles A1 and A2 are allowed in the population, the mean time until
fixation of one or other allele in the Cannings model is

t̄(p) ≈ −(4N − 2){p log p+ (1− p) log(1− p)}/σ2, (184)
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where p is the initial frequency of A1 and σ2 is defined above. This
formula explains the factor of 2 discussed after equation (102) and
in several other places. In the Wright–Fisher model σ2 ≈ 1 while
in the Moran model σ2 ≈ 2/(2N). Setting aside the factor 2N
as explained by the conversion from generations to birth and death
events, it is clear that the crucial factor is the difference between the
two models in the variance in offspring distribution. This explains
the “factor of 2” difference between the expressions in (47) and
(102), and other similar pairs of equations, (see for example the
calculations two paragraphs after (169)), once the factor of 2N has
been set aside to allow for the conversion between birth-death events
and generations.

Diploid organisms

So far we have largely ignored the diploid nature of most organisms
of interest, and have in effect considered a “population” of 2N genes,
rather than a population of N individuals, each carrying 2 genes.
We now consider a definition of effective population size where we
focus on the N individuals rather than the 2N genes. We shall do
this for a Cannings model, so that the results found also apply to
the Wright-Fisher model.

Our aim is to devise an inbreeding effective population number
that is focused around the N diploid individuals in the population.

This number will be denoted N
(id)
e , (‘d” for diploid, “i” for inbreed-

ing), and is defined as the reciprocal of the probability that two
genes (corresponding to one individual) taken at random in genera-
tion t+1 are descended from the same diploid individual in genera-
tion t. This is tantamount, in the Cannings model, to selecting two
genes at random in generation t and asking whether the two genes
drawn at random in generation t + 1 are both descended from one
or other or both of these. In the notation of (180), the probability
of this event can be written as the expected value of

N∑
i=1

(mi +mN+i)(mi +mN+i − 1)/{2N(2N − 1)}. (185)

It is not hard to see this leads to

N (id)
e =

4N − 2

σ2
d + 2

, (186)
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where σ2
d is the variance of the number of offspring genes from each

(diploid) individual. It is therefore necessary to extend the Cannings
model to the diploid case. We define a diploid Cannings model as
one for which the concept of exchangeability relates to diploid indi-
viduals. We also assume that the gene transmitted by any individual
to any offspring is equally likely to be each of the two genes in that
individual, is independent of the gene(s) transmitted by this indi-
vidual to any other offspring, and is also independent of the genes
transmitted by any other individual. With these conventions it can
be shown that

σ2 =
σ2

d + 2

4
, (187)

where σ2 is the Cannings model gene “offspring number” variance,
and from this it follows that the expressions in (181) and (186) are
identical.

More realistic Wright-Fisher models

We turn next to the second class of models where a definition of ef-
fective population size is useful, namely those Wright–Fisher models
which attempt to incorporate biological complexity more than does
the simple Wright–Fisher model (35).

The first model considered allows for the existence of two sexes.
Suppose in any generation there are N1 diploid males and N2 diploid
females, with N1 + N2 = N . The model assumes that the genetic
make-up of each individual in the daughter generation is found by
drawing one gene at random, with replacement, from the male pool
of genes, and similarly one gene with replacement from the female
pool. If X1(t) represents the number of A1 genes among males in
generation t and X2(t) the corresponding number among females,
then X1(t+ 1) can be represented in the form

X1(t+ 1) = i(t+ 1) + j(t+ 1), (188)

where i(t+1) has a binomial distribution with parameterX1(t)/(2N1)
and index N1, and j(t + 1) has a binomial distribution with pa-
rameter X2(t)/(2N2) and index N1. A similar remark applies to
X2(t+1), where now the index is N2 rather than N1. Evidently the
pair {X1(t), X2(t)} is Markovian, and there will exist a transition
matrix whose leading nonunit eigenvalue we require to find so that

we can calculate N
(e)
e .
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To do this it is necessary to find some function Y (X1, X2) which
is zero in the absorbing states of the system, positive otherwise, and
for which

E[Y {X1(t+ 1), X2(t+ 1)} | X1(t), X2(t)] = λ∗Y (t) (189)

for some constant λ∗. The value λ∗ is then the largest non-unit
eigenvalue of the Markov chain transition matrix defined by the
pair {X1(t), X2(t)}. Such a function always exists, but some trial
and error is usually necessary to find it. In the present case it is
found, after much labor, that a suitable function is

Y (X1, X2) = 1
2
C{X1(2N1 −X1)(2N1)

−2 +X2(2N2 −X2)(2N2)
−2}

+ {1− (X1 −N1)(X2 −N2)N
−1
1 N−1

2 }, (190)

where
C = 1

2
{1 + (1− 2N−1

1 − 2N−1
2 )1/2}.

With this definition the eigenvalue λ∗ is given by

λ∗ = 1
2
[1− (4N1)

−1 − (4N2)
−1 + {1 +N2(4N1N2)

−2}1/2], (191)

or approximately

λ∗ ≈ 1− (N1 +N2)(8N1N2)
−1. (192)

From this result and (175) it follows that to a close approximation,

N (e)
e = 4N1N2N

−1. (193)

If N1 = N2 (= 1
2
N), then N

(e)
e ≈ N , as we might expect, while if

N1 is very small and N2 is large, N
(e)
e ≈ 4N1. This latter value is

sometimes of use in certain animal-breeding programs.
The inbreeding population size is found much more readily. Two

genes taken at random in any generation will have identical parent
genes if both are descended from the same “male” gene or both from
the same “female” gene. The probability of identical parentage is
thus

π∗2 = 1
2

N − 1

2N − 1
{(2N1)

−1 + (2N2)
−1},

and from this it follows that

N (i)
e = (2π∗2)

−1 ≈ 4N1N2N
−1. (194)
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The variance effective population size cannot be found so readily,
and indeed strictly it is impossible to use (177) to find such a quan-
tity, since an equation of this form does not exist in the two-sex case
we consider. The fraction of A1 genes is not a Markovian variable
and in particular, using the notation of (177), the variance of x(t+1)
cannot be given in terms of x(t) alone. This indicates a real defi-
ciency in this mode of definition of effective population size. On the
other hand, sometimes there exists a “quasi-Markovian” variable
exists in terms of which a generalized expression for the variance
effective population size may be defined. In the present case the
weighted fraction of A1 genes, defined as

x(t) = X1(t)/(4N1) +X2(t)/(4N2)

has the required quasi-Markovian properties, and

var{x(t+ 1) | x(t)} = x(t){1− x(t)}N(8N1N2)
−1 +O(N−2

1 , N−2
2 ).

From this a generalized variance effective population size may be
defined, in conjunction with (177), as

N (v)
e = 4N1N2N

−1. (195)

Thus for this model, N
(e)
e ≈ N

(i)
e ≈ N

(v)
e , although strict equality

does not hold for any of these relations.

We return now to the case of a monoecious population and con-
sider complications due to geographical structure. A simplified
model for this situation which, despite its obvious biological un-
reality, is useful in revealing the effect of population subdivision,
has been given by Moran (1962).

It is supposed that the total population, of size N(H+1), is sub-
divided into H + 1 sub-populations each of size N , and that in each
generation G genes chosen at random migrate from subpopulation
i to subpopulation j for all i, j (i 6= j). Suppose that in subpopu-
lation i there are Xi(t) A1 genes in generation t. There is no single
Markovian variable describing the behavior of the total population,

but the quantities Xi(t) are jointly Markovian, and to find N
(e)
e it

is necessary to find some function Y (t) = Y {X1(t), . . . , XH+1(t)}
obeying an equation parallel to (189). It is found, after some trial
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and error, that a suitable function Y (t) is

Y (t) = [A−D + {(A−D)2 + 4BC}1/2]
∑

i

Xi(t){2N −Xi(t)}

+ 2B
∑
i6=j

∑
Xi(t){2N −Xj(t)}, (196)

where

A = (4N2 +H2G2 +G2H − 2N − 4NGH)/4N2,

B = (4GN −G2H −G2)/(4N2),

C = (4HGN −G2H2 −G2H)/(4N2),

D = (4N2 +HG2 +G2 − 4HG)/(4N2).

With this definition of Y (t), the eigenvalue λ∗ satisfying

E{Y (t+ 1) | X1(t), . . . , XH+1(t)} = λ∗Y (t)

is
λ∗ = 1

2

(
A+D + {(A−D)2 + 4BC}1/2

)
. (197)

If small-order terms are ignored, this yields eventually

N (e)
e ≈ N(H + 1){1 + (2G(H + 1))}−1} (198)

for large H and G. This equation is in fact accurate to within 10%
even for H = G = 1, and it thus reveals that population subdivision
leads to only a slight increase in the eigenvalue effective population
size compared to the value N(H+1) obtaining with no subdivision.

The inbreeding effective population size N
(i)
e can be found most

efficiently by noting that it is independent of G, since the act of
migration is irrelevant to the computation of its numerical value.
Thus immediately from (181)

N (i)
e =

{
N(H + 1)− 1

2

}
/{1− (2N)−1}, (199)

since each gene produces a number of offspring according to a bino-
mial distribution with index 2N and parameter (2N)−1. This value
clearly differs only trivially from the true population size N(H + 1)

and, for small H and G, it differs slightly from N
(e)
e .

Because of these two results, one may be tempted to ignore geo-
graphical sub-division in modeling evolutionary population genetic
processes.
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The computation of N
(v)
e is beset with substantial difficulties

since there exists no scalar Markovian variable for the model. In-
deed, unless migration rates are of a large order of magnitude, there
is not even a “quasi-Markovian” variable. Because of this no satis-

factory value for N
(v)
e has yet been put forward for the geographical

structure case.
We consider finally a population whose size assumes cyclically

the sequence of values N1, N2, N3, . . . , Nk, N1, N2, . . . . There is no

unique value of N
(e)
e , N

(i)
e or N

(v)
e in this case, and it is convenient

to extend our previous definition to cover k consecutive generations
of the process. If the population size in generation t+ k is Ni, it is
easy to see that if X(t) is the number of A1 genes in generation t,
and in each generation reproduction occurs according to the model
(35),

E[X(t+k){2Ni−X(t+k)} | X(t)] = X(t){2Ni−X(t)}
k∏

i=1

{1−(2Ni)
−1}.

Defining now N
(e)
e by the equation

{1− (2N (e)
e )−1}k =

k∏
i=1

{1− (2Ni)
−1},

it is clear that if k is small and the Ni large,

N (e)
e ≈ k{N−1

1 + · · ·+N−1
k }−1. (200)

Thus the eigenvalue effective population size is effectively the har-
monic mean of the various population sizes taken during the k-

generation cycle. A parallel formula holds for N
(i)
e , although here

it is easier to work through the probability Q(t+ k) that two genes
in generation t + k do not have the same ancestor in generation t.
Clearly

Q(t+ k) = {1− (2Ni−1)
−1}Q(t+ k − 1),

and iteration over k generations gives

Q(t+ k) =
k∏

i=1

{1− (2Ni)
−1}Q(t).
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Elementary calculations now show that N
(i)
e is also essentially equal

to the harmonic mean of the various population sizes. Again, if x(t)
is the fraction of A1 genes in generation t,

var{x(t+k) | x(t)} = 1
2
k{N−1

1 +N−1
2 +· · ·+N−1

k }x(t){1−x(t)}+0(N−2
i ).

This shows that to a suitable approximation, N
(v)
e is also the har-

monic mean of the various population sizes.
We conclude this section by noting that many problems exist

with the concept of the effective population size. Perhaps the most
notable is the following. The expression “effective population size”
is widely used in areas associated with population genetics, espe-
cially in connection with the evolution of the human population,
by authors who appear to have no idea of its intimate connection
to the Wright-Fisher model or of the fact that different concepts of
the effective population size exist. The numerical values given by
these different concepts can differ widely for a population whose size
increases with time, as with the human population, so that many
dubious claims about the “effective size” of the human population
at some given time in the past exist in the literature.

Selection

So far we have totally ignored the possibility of natural selection in
our stochastic models. Since selection is a central feature of evo-
lutionary theory, we now have to discuss it in conjunction with
stochastic models. We consider in turn the Wright–Fisher model
and the Moran model.

The Wright-Fisher model with selection

Suppose then that both selection exists, that the genotypes A1A1,
A1A2, and A2A2 have fitnesses given by (8). In view of (7) a rea-
sonable Wright–Fisher model incorporating selection is found by as-
suming that the transition matrix for the number of A1 individuals
is (63), where now

ψi = w̄−1{w11x
2 + w12x(1− x)}, (201)

where x = i/2N and w̄ = w11x
2 + 2w12x(1− x) + w22(1− x)2. The

main qualitative property of this model is that one or other absorb-
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ing state, X(·) = 0, X(·) = 2N , is eventually reached. Despite
this, essentially no quantitative results are known concerning the
stochastic behavior of the model, and the best that can be done is
to consider approximations. We do this in the next section by using
diffusion theory, and for the moment foreshadow this approach by
deriving an approximate formula for the probability that eventually
X(·) = 2N.

It is convenient to use the notation (see (9)) w11 = 1 + s, w12 =
1+sh and w11 = 1, where we assume that s is of orderN−1 and h is of
order 1. Put α = 2Ns and, in (20), write i = 2Nx, j = 2N(x+ δx).
Then this equation may be written

π(x) =
∑

Prob(x→ x+ δx)π(x+ δx)

≈
∑

Prob(x→ x+ δx)
{
π(x) + δx

dπ(x)

dx
+ 1

2
(δx)2d

2π

dx2

}
= π(x) + E(δx)

dπ(x)

dx
+ 1

2
E(δx)2d

2π

dx2
.

Under the assumptions we have made,

E(δx) = (2N)−1αx(1− x){x+ h(1− 2x)}+O(N−2),

E(δx)2 = (2N)−1x(1− x) +O(N−2).

Thus to the order of approximation we use, these calculations give

2α{x+ h(1− 2x)}dπ(x)

dx
+
d2π

dx2
= 0.

The solution of this equation, subject to the obvious boundary con-
ditions π(0) = 0, π(1) = 1, is

π(x) =

x∫
0

ψ(y) dy/

1∫
0

ψ(y) dy, (202)

where
ψ(y) = exp

(
−αy{2h+ y(1− 2h)}

)
.

In the particular case h = 1
2
, for which the heterozygote is interme-

diate in fitness between the two homozygotes, this reduces to

π(x) = {1− exp(−αx)}/{1− exp(−α)}. (203)
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It is of interesting to use this approximate formula to get some idea
of the effect of the selective differences on the probability of fixation
of A1. Suppose for example that N = 105, s = 10−4, and x = 0.5.
Then α = 20 and, from (203), π(0.5) = 0.999955. By contrast, for
s = 0 we have π(0.5) = 0.5. Evidently the rather small selective
advantage 0.0001, which is too small to be observed in laboratory
experiments, is nevertheless large enough in evolutionary terms to
have a significant effect on the fixation probability. Clearly this
occurs because, while selection might have only a minor effect in
any generation, the number of generations until fixation occurs is so
very large that the cumulative effect of selection is considerable.

To find further results concerning the selective theory of the
Wright–Fisher model we will later turn to the vehicle that is most
convenient to find these results, namely diffusion theory.

The Moran model with selection

Selection can be incorporated into the Moran model (92) - (94) by
assuming differential birth rates or differential death rates. The two
approaches give similar results so we consider here only the case
where death rates differ. To do this we suppose that if at any time
there are i A1 genes in the population the probability that the next
individual chosen to die is A1 is

µ1i/{µ1i+ µ2(2N − i)}. (204)

If µ1 = µ2 there is no selection while if µ1 < µ2 the allele A1 has
a selective advantage over A2. It follows that the transition matrix
for the number of A1 individuals has elements

pi,i−1 = µ1i(2N − i)/[2N{µ1i+ µ2(2N − i)}], (205)

pi,i+1 = µ2i(2N − i)/[2N{µ1i+ µ2(2N − i)}], (206)

pi,i = 1− pi,i−1 − pi,i+1. (207)

The matrix defined by these equations is a continuant, and the the-
ory for these can be applied immediately. This theory shows that
the probability πi of eventual fixation of A1, given an initial number
of i A1 individuals, is

πi = {1− (µ1/µ2)
i}/{1− (µ1/µ2)

2N}. (208)
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If now µ1/µ2 = 1− 1
2
s, where s is small and positive, A1 has a slight

selective advantage over A2 and (208) can be approximated by

π(x) ≈
{
1− exp

(
−1

2
αx
)}
/
{
1− exp

(
−1

2
α
)}
, (209)

where x = i/2N and α = 2Ns. This formula differs from (203)
by a factor of 2 in the exponents. This is not because the selective
differences differ by a factor of 2, since indeed they do not, but from
a more deep-rooted difference between the two models which we
examine elsewhere.

It is possible to use formulae for continuant Markov chains to get
expressions for the mean absorption time, conditional mean absorp-
tion times, and so on. We do not do this here since the formulae
become very unwieldy and uninformative, and since also we later
consider simple approximations for these quantities. It may finally
be remarked that no formula is known for the eigenvalues of the
matrix defined by (205).

Diffusion theory

Introduction

In previous sections we encountered some difficulty in deriving ex-
plicit formulae for several quantities of evolutionary interest, partic-
ularly when the population behavior was described by the Wright–
Fisher model (35) or any of its generalizations. Even for the Moran
model, where explicit formulae can often be found, the effects of
the genetic parameters are sometimes obscured by the complexities
of the expressions that arise. For both these reasons it would be
most useful to us if we could approximate these quantities by rea-
sonably accurate expressions which are comparatively simple, and
which display explicitly the effects of the various genetic parame-
ters. Fortunately there exists a general approach which very often
does all this for us, namely in approximating the discrete process by
a continuous-time continuous-space diffusion process.

A substantial and mathematically deep theory of diffusion pro-
cesses exists. Our approach to diffusion processes does not, how-
ever, proceed through this theory, being often rather intuitive and
avoiding theoretical niceties. We shall in particular assume without
question the existence of a unique diffusion process having certain
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properties that we require. We first consider the elements of the
theory divorced from specific genetical applications, and later apply
this theory to a variety of genetical models.

The forward and backward Kolmogorov equations

We consider a discrete Markov chain with state space {0, 1, 2, . . . , 2N},
transition matrix P = {pij} and initial value k for the random vari-
able whose properties are described by this Markov chain. For con-

venience we write p
(t)
ki as f(i; k, t), so that

f(j; k, t+ 1) =
2N∑
i=0

f(i; k, t)pij. (210)

We re-scale the space axis by a factor (2N)−1 and consider the new
variables

x = i(2N)−1, x+ δx = j(2N)−1, (211)

and write p = k(2N)−1. In all applications of interest to us, E(δx|x) =
0((2N)−γ) and Var(δx|x) = 0((2N)−γ), where γ = 1 or 2; now
change the time scale so that possible changes in the random vari-
able can occur at time points δt, 2δt, 3δt, . . ., where δt = (2N)−γ.
The re-scaled process is of course essentially identical to the origi-
nal process and in particular is still a discrete process. Nevertheless
we feel that as 2N → ∞ the process converges in some way to a
continuous-time continuous-space diffusion process, and our aim is
to identify this diffusion process and to discover some of its proper-
ties.

Suppose that in the discrete process the moments of the change
δx, given the current value x at time t, satisfy the equations

E(δx) = a(x)δt+ o(δt), (212)

Var(δx) = b(x)δt+ o(δt), (213)

E(|δx|3) = o(δt). (214)

Here a(x) and b(x) are assumed to be functions of x but not of t.
We write (210) in the form

f(x+ δx; p, t+ δt) =

∫
f(x; p, t)f(x+ δx;x, δt) dx,
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where here and below all integrals have terminals 0 and 1. We
now formally expand on both sides as Taylor series in δt and δx.
Using equations (212) – (214) and retaining leading terms only, we
eventually arrive at the equation

∂f(x; t)

∂t
= − ∂

∂x
{a(x)f(x; t)}+ 1

2

∂2

∂x2
{b(x)f(x; t)}. (215)

This is the forward Kolmogorov (Fokker–Planck or diffusion) equa-
tion and is of fundamental importance in the theory of population
genetics. This formal procedure can be justified by more advanced
mathematical diffusion theory.

Since small δt→ 0 corresponds to large 2N , we now assume that
there exists a diffusion process on [0, 1] that satisfies (212)–(214)
and possesses a density function f(x; t) which satisfies (215). We
expect this process to approximate the original discrete process in
the sense that, for 0 < g < h < 1,

h∫
g

f(x; t) dx (216)

provides a good approximation to the probability that the original
unscaled discrete random variable is between 2Ng and 2Nh at time
(2N)γt.

In the procedure leading to (215) little mention was been made
of the initial value p of the diffusion variable, and p does not appear
explicitly in (215). However, the function f(x; t) should be written
more fully f(x; p, t), since the solution of the equation depends on
the value of p. There is, however, a second equation that makes a
more explicit and indeed fundamental use of the value of p. If we
consider instead of the time points (0, t, t+ δt) the new time points
(0, δt, t+ δt), we arrive at the equation

f(x; p, t+ δt) =

∫
g(δp; p)f(x; p+ δp, t)d(δp). (217)

Here δp is the change in the value of the random variable in the
time interval (0, δt) and g(δp; p), its probability density function.
Expanding the integrand as above and retaining leading terms, we
arrive at the equation

∂f(x; p, t)

∂t
= a(p)

∂f(x; p, t)

∂p
+ 1

2
b(p)

∂2f(x; p, t)

∂p2
. (218)
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This is the backward Kolmogorov equation, which for several pur-
poses is more useful than the forward equation (215).

Some care must be exercised in the interpretation of equation
(218). As stated above, the density function f(x; p, t) depends on
p, and all that is claimed is that, as a function of p, this density
function satisfies equation (218). The statement sometimes made
that (218) implies a time reversal and that p is a random variable
with x fixed is incorrect: the random variable in equation (218) is
the current gene frequency x.

An explicit solution of (215), or of (218), can sometimes be
achieved, as we see later. The solution is usually of the eigenfunction
expansion form

f(x; p, t) =
∞∑
i=1

gi(x, p) exp(−λit), (219)

where the λi (0 ≤ λ1 < λ2 < λ3 . . .) are eigenvalue constants and
the gi(x, p), the associated eigenfunctions. This form of solution is
clearly analogous to the spectral expansion of a Markov chain n-step
transition matrix , a parallel we examine in more detail in particular
cases. Remarkably, a considerable amount of information concerning
the diffusion process (215) can be found without computing the
explicit solution (219), as we now see.

Fixation probabilities

In this and the next three sections we assume without question the
existence of a diffusion process on [0, 1] satisfying (212)–(214) and
admitting a density function satisfying (215) and (218).

An equation parallel to (218) can be found by replacing f(x; p, t)
by F (x; p, t) throughout, where

F (x; p, t) =

x∫
0

f(y; p, t) dy, (220)

so that

∂F (x; p, t)

∂t
= a(p)

∂F (x; p, t)

∂p
+ 1

2
b(p)

∂2F (x; p, t)

∂p2
. (221)
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Suppose now that both x = 0 and x = 1 are absorbing states of the
diffusion process. From equation (221) we arrive at the equation

∂P0(p; t)

∂t
= a(p)

∂P0(p; t)

∂p
+ 1

2
b(p)

∂2P0(p; t)

∂p2
, (222)

where P0(p; t) is the probability that absorption has occurred at x =
0 at or before time t. The same equation holds for the probability
P1(p; t) that absorption has occurred at x = 1 at or before time t.
Although P0(p; t) and P1(p; t) obey the same equation, their values
differ due to different boundary conditions. By letting t → ∞, the
probability P0(p) that absorption ever occurs at x = 0 satisfies the
equation

0 = a(p)
dP0(p)

dp
+ 1

2
b(p)

d2P0(p)

dp2
. (223)

Since P0(p) clearly satisfies the boundary conditions P0(0) = 1,
P0(1) = 0, it is straightforward to solve equation (223) explicitly
to get

P0(p) =

1∫
p

ψ(y) dy/

1∫
0

ψ(y) dy, (224)

where

ψ(y) = exp
(
−2

y∫
{a(z)/b(z)} dz

)
. (225)

Similarly the probability P1(p) that absorption eventually occurs at
x = 1 is found to be

P1(p) =

p∫
0

ψ(y) dy/

1∫
0

ψ(y) dy. (226)

We have already found these formulae as approximations to the
values in a finite Markov chain equations (202) and (203), where
a different notation was used, and without reference to diffusion
processes. Although we have carried out a scaling of the time axis
in passing from the original Markov chain to the diffusion process,
there is no need to re-scale the values (224) and (226) when using
them as approximations in the Markov chain. This is no longer true
for questions concerning the time until absorption, as we now see.
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Fixation time properties

We start by assuming that both x = 0 and x = 1 are absorbing
barriers and consider the mean time until one or other boundary is
reached in the diffusion process of interest. Equation (222) and the
corresponding equation for x = 1 show that if φ(t; p) is the density
function of the time t until absorption occurs, then φ(t; p) satisfies
the equation

∂φ(t; p)

∂t
= a(p)

∂φ(t; p)

∂p
+ 1

2
b(p)

∂2φ(t; p)

∂p2
. (227)

Then

−1 = −
∞∫

0

φ(t; p) dt

= −[tφ(t; p)]∞0 +

∞∫
0

t
∂φ

∂t
dt

= 0 +

∞∫
0

t

{
a(p)

∂φ

∂p
+ 1

2
b(p)

∂2φ

∂p2

}
dt

so that

−1 = a(p)
dt̄(p)

dp
+ 1

2
b(p)

d2t̄(p)

dp2
, (228)

providing an interchange in the order of integration and differen-
tiation is justified, that the mean fixation time is finite, and that
tφ(t; p) → 0 as t→∞. Here

t̄(p) =

∞∫
0

tφ(t; p) dt (229)

is the mean time until one or other absorbing boundary is reached,
given the initial frequency p. The solution of (228), subject to the
boundary conditions t̄(0) = t̄(1) = 0, is best expressed in the form

t̄(p) =

1∫
0

t(x; p) dx, (230)
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where

t(x; p) = 2P0(p)[b(x)ψ(x)]−1

x∫
0

ψ(y) dy, 0 ≤ x ≤ p, (231)

t(x; p) = 2P1(p)[b(x)ψ(x)]−1

1∫
x

ψ(y) dy, p ≤ x ≤ 1. (232)

For the original Markov chain we approximate the mean absorption
time by

(2N)γ t̄(p). (233)

The representation (230) suggests a more detailed examination of
the function t(x; p). This function has the interpretation that

x2∫
x1

t(x; p) dx (234)

is the mean time in the diffusion process that the random variable
spends in the interval (x1, x2) before absorption. Correspondingly,
we approximate the mean number of times in the Markov chain
that the discrete random variable takes the value j (= 2Nx) before
absorption by

t̄k,j ≈ (2N)γ−1t(x; p). (235)

It is possible to derive higher moments of the absorption time.
For example, we have

−2t̄(p) = −2

∞∫
0

tφ(t; p) dt

= −[t2φ(t; p)]∞0 +

∞∫
0

t2
∂φ

∂t
dt

=

∞∫
0

{
a(p)

∂t2φ(t; p)

∂p
+ 1

2
b(p)

∂2t2φ(t; p)

∂p2

}
dt

= a(p)
dS(p)

dp
+ 1

2
b(p)

d2S(p)

dp2
, (236)
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where S(p) is the second moment of the absorption time. In this
procedure we have formally interchanged the order of integration
and differentiation. Equation (236) can be solved for S(p), subject
to the boundary conditions S(0) = S(1) = 0, and hence a formula
for the variance of the absorption time can be found.

The above formulae require modification when there is only one
absorbing state. We do not go into details here and only state the
conclusions. If 0 is the only absorbing state (230) continues to hold,
but t(x; p) must be redefined as

t(x; p) = 2
(
b(x)ψ(x)

)−1

x∫
0

ψ(y) dy, 0 ≤ x ≤ p, (237)

t(x; p) = 2
(
b(x)ψ(x)

)−1

p∫
0

ψ(y) dy, p ≤ x ≤ 1. (238)

Similarly, when 1 is the only absorbing state we have

t(x; p) = 2
(
b(x)ψ(x)

)−1

1∫
p

ψ(y) dy, 0 ≤ x ≤ p, (239)

t(x; p) = 2
(
b(x)ψ(x)

)−1

1∫
x

ψ(y) dy, p ≤ x ≤ 1. (240)

In both cases equations (233) and (234) hold.

The stationary distribution

We have assumed above that in the Markov chain we are interested
in there has existed at least one absorbing state. In several cases of
interest there are no absorbing states, and there exists a stationary
distribution {φj} for the number of A1 genes. Since an explicit ex-
pression for this distribution has not been found in many examples
of genetic interest, we aim in this section to approximate this distri-
bution by finding the stationary distribution of the approximating
diffusion process. It will turn out that this leads to a very simple
form for this approximating distribution in which the effects of the
general parameters are clearly displayed.
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Our starting point is the forward Kolmogorov equation in (215).
If we integrate throughout formally with respect to x, there results
eventually

∂

∂t
[1− F (x; t)] = a(x)f(x; t)− 1

2

∂{b(x)f(x; t)}
∂x

. (241)

Here F (x; t) is the distribution function

F (x; t) =

x∫
0

f(y; t) dy. (242)

This formal derivation suggests that the right-hand side in (241) is
the rate of flow of probability (from left to right) across the point x
at time t. This interpretation can be verified, and we thus call the
right-hand side in (241) the probability flux of the diffusion process.
If a stationary distribution f(x) exists this probability flux will be
zero if f(x; t) is replaced by f(x), so that the stationary distribution
satisfies the equation

−a(x)f(x) + 1
2

d{b(x)f(x)}
dx

= 0. (243)

Integration shows that the solution of this equation is

f(x) = const[b(x)]−1 exp
(
2

x∫
a(y)/b(y) dy

)
, (244)

where the constant is allocated so that
1∫

0

f(x) dx = 1. (245)

So far as the original Markov chain is concerned, our interpretation
is that the diffusion approximation to the stationary probability
that the random variable in the Markov chain lies in [2Nx1, 2Nx2]
is given by

Pr{2Nx1 ≤ X ≤ 2Nx2} ≈
x2∫

x1

f(x) dx. (246)

This approximation turns out to be satisfactory except when x1 ≈ 0
or x2 ≈ 1, in which case special arguments, which we shall consider
later, are needed.
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Conditional processes

In this section we consider diffusion processes where 0 and 1 are both
absorbing barriers. It is often of interest to single out those diffusions
for which a nominated absorbing barrier is eventually reached, and
we do this by the theory of conditional processes. For definiteness
we assume the barrier in question is x = 1, although we shall also
give some formulae applying when it is x = 0.

Since there can be no stationary distribution for such conditional
processes, and since also there is no interest in fixation probabili-
ties, interest centers almost entirely on properties of the time until
fixation. Regarding the diffusion as an approximation to a Markov
chain, it is clear from (28) that the sojourn time function (231) and
(232) should be replaced by

t∗(x; p) = t(x; p)P1(x)/P1(p). (247)

This gives

t∗(x; p) = 2P0(p)P1(x)[P1(b)b(x)ψ(x)]−1

x∫
0

ψ(y) dy, 0 ≤ x ≤ p,(248)

t∗(x; p) = 2P1(x)[b(x)ψ(x)]−1

1∫
x

ψ(y) dy, p ≤ x ≤ 1. (249)

We consistently use the asterisk notation (∗) to denote functions
computed conditional on eventual absorption at x = 1 and, below,
the double asterisk notation (∗∗) when conditioning on eventual
absorption at x = 0. Thus conditional on eventual absorption at
x = 0, the sojourn time function is, by arguments parallel to those
just given,

t∗∗(x; p) = 2P0(p)[b(x)ψ(x)]−1

x∫
0

ψ(y) dy, 0 ≤ x ≤ p, (250)

t∗∗(x; p) = 2P0(x)P1(p)[P0(p)b(x)ψ(x)]−1

1∫
x

ψ(y) dy, p ≤ x ≤ 1.(251)

Equation (27) suggests an even stronger result than these, namely
that the conditional density functions f ∗(x; p, t) and f ∗∗(x; p, t) of
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the diffusion variable at time t satisfy

f ∗(x; p, t) = f(x; p, t)P1(x)/P1(p), (252)

f ∗∗(x; p, t) = f(x; p, t)P0(x)/P0(p). (253)

It is clear that equations (248)–(251) can be used immediately to
find the conditional mean times before absorption.

We now indicate another way in which these conditional mean
times can be derived, namely by finding the conditional process
analogues to the Kolmogorov equations (215) and (218). To do this
we must find the conditional process drift and diffusion coefficients
analogous to those defined by (212) and (213). Let A be the event
that absorption eventually occurs at x = 1 and p∗(x → x + δx) be
the conditional probability density, given A, of a transition from x
to x+ δx in time δt. Then

p∗(x→ x+ δx) = p(x→ x+ δx and A)/Prob(A)

= p(x→ x+ δx)P1(x+ δx)/P1(x)

≈ p(x→ x+ δx)[1 + δxP ′1(x)/P1(x)],

where we use the dash notation (′) to refer to differentiation with
respect to x. Hence, in an obvious notation,

a∗(x)δt =

∫
(δx)p∗(x→ x+ δx)d(δx)

≈
∫

(δx)p(x→ x+ δx)[1 + (δx)P ′1(x)/P1(x)]d(δx)

= {a(x) + b(x)P ′1(x)/P1(x)}δt.

Thus it follows that

a∗(x) = a(x) + b(x)P ′1(x)/P1(x). (254)

It is found similarly that

b∗(x) = b(x). (255)

In the case of the Wright–Fisher model, with no selection or
mutation, so that a(x) = 0, b(x) = x(1 − x), P1(x) = x, equations
(254) and (255) give

a∗(x) = 1− x, b∗(x) = x(1− x). (256)
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These values have already been used in equation (55), and was found
for that equation by a process different from the above. In the same
model, when the condition is made that the allele of interest is
eventually lost,

a∗∗(x) = −x, b∗∗(x) = x(1− x). (257)

The arguments leading to these formulae can be made more rig-
orous by suitable handling of small-order terms. The conditional
density f ∗(x; p, t) now satisfies the forward equation

∂f ∗(x; p, t)

∂t
= −∂{a

∗(x)f ∗(x; p, t)}
∂x

+ 1
2

∂2{b∗(x)f ∗(x; p, t)}
∂x2

(258)

and the backward equation

∂f ∗(x; p, t)

∂t
= a∗(p)

∂f ∗(x; p, t)

∂p
+ 1

2
b∗(p)

∂2f ∗(x; p, t)

∂p2
. (259)

Using (252), (254) and (255) it is easy to check that these are con-
sistent with (215) and (218). The conditional mean absorption time
may now be found by using a∗(x) and b∗(x) in (239) and (240), and
the resulting value agrees with that found from (248) and (249).
This final approach is more general in that it uses the defining equa-
tions (258) and (259) and thus can be used to find higher moments
of the conditional absorption time. We take this point up later when
considering specific applications.

Parallel calculations apply, with the obvious changes, to find the
conditional density function f ∗∗(x; p, t) when the condition is made
that the allele of interest is eventually lost from the population.

Some diffusion process theory

As mentioned above, there exists a deep mathematical theory of
diffusion processes. In this section we consider those parts of the
theory that are of use to us in genetic processes. Because the random
variable of interest to us is the frequency of some allele, we consider
only diffusion processes on the interval [0, 1].

The drift and diffusion functions a(x) and b(x) were introduced
in equations (213) and (212). They may be used to define the im-
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portant functions p(x) and m(x), defined respectively by

p(x) =

x∫
c

exp
(
−2

y∫
a(z)/b(z) dz

)
dy, (260)

m(x) = 2

x∫
c

{b(y)}−1 exp
(
2

y∫
a(z)/b(z) dz

)
dy, (261)

for some arbitrary constant c. Up to a linear transform, p(x) is
identical to the fixation probability P1(x). A diffusion is said to be
on its natural scale if p(x) = x, which, from (260), is equivalent to
a(x) = 0. For any diffusion not on its natural scale it is possible
to find a transformed random variable (indeed the transformation is
x→ p(x)) that is, and this explains the intimate link between p(x)
and P1(x). For this reason, p(x) is called the scale function of the
diffusion process. The function m(x) is called the speed function of
the process.

The functions p(x) and m(x) are central to many properties of
diffusion processes, and we now show how they can be used to elu-
cidate boundary behavior. Let r be an arbitrary point in (0, 1) and
s be one or other boundary point (that is s = 0 or s = 1). From
p(x) and m(x) we compute the functions

u(s) =

s∫
r

m(x)dp(x), (262)

v(s) =

s∫
r

p(x)dm(x). (263)

The nature of the boundary s is exhibited as follows:

u(s) v(s) boundary type accessible? absorbing?

<∞ <∞ regular yes no
<∞ = ∞ exit yes yes
= ∞ <∞ entrance no no
= ∞ = ∞ natural no yes

(264)
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A boundary is accessible if there exists positive probability that it
can be reached in finite time from a given interior point, and is
absorbing if the process remains forever at the boundary if it should
reach it. We later given genetic examples of some of these various
boundaries.

Applications of diffusion theory in genetics

In this section we apply some of the diffusion theory considered
in the previous section to various Markov chain models arising in
population genetics in order to arrive at various conclusions of evo-
lutionary interest.

Our first aim is to see how the behavior of a given Markov chain
can be mimicked by a diffusion process on [0, 1]. To do this it is con-
venient to start with the general Wright–Fisher model specified by
(63) and (201). In this model the variable considered is the number
j of A1 genes in a diploid population of fixed size N and thus has
state space {0, 1, 2, . . . , 2N}. To work with a variable whose state
space is closer to that of the diffusion process, we consider instead
the fraction x of A1 genes in the population, whose state space is
{0, (2N)−1, . . . , 1}. We assume the notation x for the frequency of
A1 throughout, and also write p for the initial frequency of A1.

So far as other notation is concerned, it is convenient to adopt
the notation given in (9) that the genotype fitnesses are denoted by

w11 = 1 + s, w12 = 1 + sh, w22 = 1. (265)

Further, when mutation exists, we assume mutation rates u (from
A1 → A2) and v (from A2 → A1).

The diffusion model we concentrate on requires that s, u and v
are all 0(N−1). We make this assumption throughout, and then put

α = 2Ns, β1 = 2Nu, β2 = 2Nv (266)

where α, β1, and β2 are all 0(1). Then standard binomial formulae
for the model (63) show that

E(δx | x) =
(
αx(1− x){x+ h(1− 2x)} − β1x+ β2(1− x)

)
(2N)−1

+ o(N−1),

Var(δx | x) = x(1− x)(2N)−1 + o(N−1), (267)

E{|δx|3} = o(N−1).
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These moments fit into the format (212)–(214) provided we choose

δt = (2N)−1, (268)

b(x) = x(1− x), (269)

a(x) = αx(1− x){x+ h(1− 2x)} − β1x+ β2(1− x). (270)

The requirement (268) is met by taking unit time in the diffusion
process to correspond to 2N generations in the Markov chain. It is
important to keep this scaling in mind when considering the relation
between “time” properties in the diffusion process and those in the
Markov chain. We now consider some properties of the diffusion pro-
cess on [0, 1] with drift and diffusion coefficients given respectively
by (270) and (269).

Before proceeding we observe that in practical applications the
idealized model (63) will probably have to be replaced by something
more complex, perhaps one or other of the models discussed above
in connection with effective population sizes. At the end of the next
section we pursue this point for one particular such complex model.
Although the theory is by no means clear, it seems likely that all
the diffusion results given below will continue to hold, at least to a
good approximation, when N is replaced by the variance effective

population size N
(v)
e . Except for the case considered at the end of

the next section we make no further explicit mention of this point
in these notes.

The first step in discussing properties of the diffusion process with
the drift and diffusion coefficients (269) and (270) is to compute the
scale function and speed measure of the process, defined by (260)
and (261). These become

p(x) =

x∫
c

y−2β2(1− y)−2β1 exp{α(2h− 1)y2 − 2αhy} dy,(271)

m(x) = 2

x∫
c

y2β2−1(1− y)2β1−1 exp{−α(2h− 1)y2 + 2αhy} dy,(272)

for an arbitrary constant c. We first use these expressions to consider
boundary behavior. Use of (271) and (272) in (262) and (263) shows
that near x = 1, the functions u(x) and v(x) take the form (for
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β1 6= 1
2
)

u(x) = A+ 0(1− x)1−2β1 , v(x) = B + 0(1− x)2β1 .

Here A and B are constants whose precise values are unimportant.
It follows that v(x) is always finite at x = 1, but that u(x) is fi-
nite at this point only if β1 <

1
2
. From this we conclude that the

boundary x = 1 is regular (accessible but non-absorbing) if β1 <
1
2

and entrance (inaccessible and non-absorbing) if β1 >
1
2
. The same

conclusion holds for the boundary x = 0, with β2 replacing β1. The
values of α and h are irrelevant to these boundary descriptions. The
case β1 = 1

2
is easily handled separately.

The intuitive meaning of these conclusions is clear enough. If
the mutation rate from A1 to A2 and the population size are jointly
large enough there is zero probability that the frequency of A1 can
ever achieve the value unity. Of course this conclusion applies for
the diffusion process and it not true for the Markov chain (63).

If β1 = 0 the boundary x = 1 is found to be exit (accessible and
absorbing), and this again accords with what we expect since, if the
boundary is reached, the absence of mutation from A1 to A2 means
that the frequency of A1 remains forever at unity. The fact that the
boundary is accessible is less obvious intuitively – it is possible that
a natural boundary is absorbing but not accessible, that is for which
there is zero probability that it is reached by diffusion from within
(0, 1).

The functions p(x) and m(x) are also central to the calculation of
fixation probabilities and stationary distributions respectively, when
these are appropriate. We defer consideration of these until we take
up specific cases later.

We conclude this section by emphasizing that our main interest is
in Markov chain models such as (63), and we view diffusion processes
mainly as approximations to these. Usually the approximations are
excellent, but in some instances, particularly near the boundaries
x = 0, x = 1 they are less so, and for these cases some care is
needed in proceeding.

No selection or mutation

When there is no selection or mutation the model defined by (63)
and (201) reduces to (35). Rather complete knowledge of the diffu-
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sion approximation to this model is available, and in this section we
explore this in some detail. Clearly we have

a(x) = 0, b(x) = x(1− x), (273)

and the forward equation becomes

∂f(x; t)

∂t
= 1

2

∂2

∂x2
{x(1− x)f(x; t)}. (274)

The solution of this equation, and others more complex, was achieved
in a series of papers by Kimura (1955a, b, c, 1956, 1957). The ex-
plicit solution of (274), subject to the requirement x = p when t = 0,
is

f(x; p, t) =
∞∑

j=1

4(2j + 1)p(1− p)

j(j + 1)
T 1

j−1(1− 2p)T 1
j−1(1− 2x)

× exp
{
−1

2
j(j + 1)t

}
. (275)

Here T 1
j−1(x) is a Gegenbauer polynomial defined in terms of the

hypergeometric function by

T 1
j−1(x) = 1

2
j(j + 1)F

(
j + 2, 1− j, 2, 1

2
(1− x)

)
,

so that in particular

T 1
0 (x) = 1, T 1

1 (x) = 3x. (276)

The speed measure m(x) for the coefficients (273) is such that

w(x) = dm(x)/dx = 2x−1(1− x)−1. (277)

The probabilities P0(t) and P1(t) that the diffusion has reached
0 or 1 respectively by time t are

P0(t) = 1− p+
∞∑

j=1

(2j + 1)p(1− p)(−1)jF (1− j, j + 2, 2, 1− p)

× exp
(
−1

2
j(j + 1)t

)
, (278)

P1(t) = p+
∞∑

j=1

(2j + 1)p(1− p)(−1)jF (1− j, j + 2, 2, p)

× exp
(
−1

2
j(j + 1)t

)
. (279)
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The probability of ultimate fixation at x = 1 can be found by letting
t → ∞ in (279) or else by computing (226), with ψ(x) defined by
(225) and (273). Evidently ψ(x) = 1 and hence

Prob(ultimate fixation at x = 1) = p. (280)

The mean fixation time can be found from (231) and (232). These
equations give

t̄(x; p) = 2(1− p)/(1− x), 0 ≤ x ≤ p,

t̄(x; p) = 2p/x, p ≤ x ≤ 1,
(281)

so that the mean absorption time is

t̄(p) = −2{p log p+ (1− p) log(1− p)} (282)

time units, or −4N{p log p + (1 − p) log(1 − p)} generations. This
agrees with the value (47) found without recourse to diffusion pro-
cesses, and yields (49) and (50) as cases of particular interest.

The variance of the absorption time can be found, by further
calculations, to be

4
(
p

1∫
p

λ(x) dx− (1− p)

p∫
0

λ(x) dx
)
− t̄(p)2, (283)

where

λ(x) = −2

x∫
[(1− y)−1 log y + y−1 log(1− y)] dy. (284)

The value (283) is in terms of (squared) time units and must be
multiplied by 4N2 to be brought to a (squared) generation basis.

The complete distribution of the absorption time is implicit in
(278) and (279), since

Prob{absorption time ≤ t} = P0(t) + P1(t). (285)

Because of the form of the solutions (278) and (279), this expression
is of most use when t is large. This solution may be supplemented
by an asymptotic expansion the accuracy of which is best for small
values of t. This asymptotic expansion, together with (285), then
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yields a rather complete picture of the distribution of the absorption
time.

What do these diffusion results mean for the Markov chain model
(35)? The fixation probability (280) is exactly correct for this model,
since we have seen that this value can be reached directly. The
mean absorption time approximation has been confirmed. We have,
however, arrived at the more detailed information, from (281) and
(235), that if the initial number of A1 genes in the Markov chain
model is k, the mean number of generations for which this number
assumes the value j, before reaching 0 or 2N , is approximately

t̄k,j = 2(2N − k)/(2N − j), j ≤ k,

t̄k,j = 2k/j, j ≥ k.
(286)

The particular case k = 1, of particular interest to Fisher and
Wright, gives t̄1,j = 2j−1, in agreement with (52).

We turn now to the diffusion process spectral expansion (275).
Recalling the difference in time scale between the Markov chain
(35) and the diffusion process (274), it is clear that the expression
exp
{
−1

2
j(j + 1)

}
is the analogue (see (82)) of the Markov chain

n-step eigenvalue

[(1− 1

2N
)(1− 2

2N
) . . . (1− j

2N
)]2N (287)

which is approximately

exp−{1 + 2 + . . .+ j} = exp−1
2
{j(j + 1)}. (288)

There is also a parallel between the eigenfunctions in (275), but we
do not pursue the details of this.

We consider now processes conditional on the event that a spec-
ified boundary is eventually reached, and recover various formulae
found earlier by other methods. We suppose for definiteness that
x = 1 is the absorbing state ultimately reached. Equations (252)
and (275) show that the density function of x at time t is

f ∗(x; p, t) =
∞∑

j=1

4(2j + 1)x(1− p)

j(j + 1)
T 1

j−1(1− 2p)T 1
j−1(1− 2x)

× exp
{
−1

2
j(j + 1)t

}
. (289)
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For large t and small p this gives

f ∗(x; p, t) ∼ 6x exp(−t), (290)

so that

lim
t→∞

f(x | x 6= 0, 1, eventual fixation at x = 1) = 2x. (291)

The functions t∗(x) defined in (248) and (249) become

t∗(x) = 2(1− p)x/{p(1− x)}, 0 ≤ x ≤ p,

t∗(x) = 2, p ≤ x ≤ 1.
(292)

The conditional mean absorption time, found by integration, is then

t∗(p) = −2p−1(1− p) log(1− p). (293)

In the Markov chain (35) this suggests the approximation that, if k
is the initial value of the Markov variable,

t∗k,j ≈ 2(2N − k)j/k(2N − j), j ≤ k,

t∗k,j ≈ 2, j ≥ k,
(294)

and a conditional mean fixation time of −4Np−1(1 − p) log(1 − p)
generations. One interesting case arises when k = 1, so that there
is initially only one gene of the allele of interest. One case of this
concerns a unique selectively neutral new mutant destined for fixa-
tion. Equation (294) shows that, on average, this allele spends two
generations at each possible frequency value, (k = 1, 2, . . . , 2N − 1,
so that if t∗1 is the conditional mean fixation time,

t̄∗1 = 4N − 2 (295)

generations. It is instructive to see how easily information about
the conditional process can be found from information concerning
the unconditional process.

The value given in (295) is identical to the calculation given in
(131), and it is interesting to discuss why this is so. Both expressions
are identical to the conditional mean loss time, given initially 2N−1
genes of the allele A1. The reason why the unconditional mean time
in the mutation process and the conditional mean time in the non-
mutation process are essentially identical for the case θ = 2 can be
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seen from the fact that for θ = 2, the drift and diffusion coefficients
a(x) and b(x), given in (313) are identical to the conditional process
drift and diffusion coefficients given in (257). Identical arguments
show that the same mean time applies when there is a single initial
A1 gene when the condition is made, in the no mutation case, that
A1 eventually fixes in the population. This mean time then has the
interpretation as the mean time back to the most recent common
ancestor gene of all genes in the current population, as is discussed
by Dr. Joyce when considering coalescent theory.

The conditional variance of the absorption time can be found by
solving (236), subject to appropriate boundary conditions. Here we
must use the conditional process drift coefficient

a∗(x) = 1− x

rather than the unconditional value. It is found that

(σ∗)2(p) = 8

[
π2/6 + p−1(1− p) log(1− p){1− (2p)−1(1− p) log(1− p)}

−
∞∑

j=1

pj/j2

]
. (296)

In the limiting case p→ 0 this gives

(σ∗)2 ≈ 8[π2/6− 1.5] ≈ 1.16, (297)

or, for the process (35), 4.64N2 (squared generations). The com-
plete distribution of the conditional absorption time can be found
immediately from (279). We have

Prob{absorption at x = 1 before time t | eventual absorption at x = 1}

=
Prob { absorption at x = 1 before time t}

Prob{ eventual absorption at x = 1}
(298)

= 1 +
∞∑

j=1

(2j + 1)(1− p)F (j + 2, 1− j, 2, p)(−1)i exp{−j(j + 1)t}.

The expressions (293) and (297) can in principle be found from this
distribution, but it is far simpler to arrive at them in the manner
we have shown earlier.

We consider briefly the case where we condition on eventual loss
of the allele A1. Since for this case a(x) = 0, b(x) = x(1−x), P0(x)1−
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x, the analogue of equation (254) gives a∗∗ = −x. The analogue of
equation (293) is, in terms of generations, t∗∗ = −4N(p log p)/(1−p).
This is identical to the value given in equation (74), and this is not
surprising since the value of the drift coefficient a∗∗ given above
is identical to that given in equation (313) below for the one-way
mutation case when θ = 2. Since the diffusion coefficients are also
the same in the two cases, the entire stochastic behavior of the
conditional process without mutation and the unconditional process
with mutation (for θ = 2) are identical. This seems for the moment
to be no more than a curiosity, but it will turns out to have a more
interesting interpretation when considering age and retrospective
properties in genetic processes.

Selection

Fixation probabilities

Suppose now that the three genotypes have fitnesses given by (265).
Assuming no mutation, the drift coefficient (270) becomes

a(x) = αx(1− x){x+ h(1− 2x)}. (299)

From this the scale function and speed measure are calculated as

p(x) =

x∫
c1

ψ(y) dy, (300)

m(x) = 2

x∫
c2

y−1(1− y)−1{ψ(y)}−1 dy, (301)

where
ψ(y) = expα{(2h− 1)y2 − 2hy}. (302)

Both boundaries x = 0, x = 1 are exit, and the probability that
one or other boundary is eventually reached is unity. The respective
probabilities are given by (224) and (226), with ψ(y) defined by
(302).

These expressions simplify significantly only in the case of no
dominance (h = 1

2
), for which

P1(p) = {1− exp(−αp)}/{1− exp(−α)}. (303)



96

p = 0.001 p = 0.5
N = 104 N = 105 N = 106 N = 104 N = 105 N = 106

0.01 0.181 0.865 1.000 1.000 1.000 1.000
0.001 0.020 0.181 0.865 1.000 1.000 1.000

s 0.0001 0.002 0.020 0.181 0.731 1.000 1.000
0.00001 0.001 0.002 0.020 0.525 0.731 1.000

Table 1: Values of P1(p), for various values of N , s, and p, calculated from (303)

This agrees with the approximation (203) found without using dif-
fusion methods. Some numerical values calculated from (303) are
given in Table 1.

The conclusions to be drawn from this table are obvious enough.
When N , s and p are jointly sufficiently large, fixation of the favored
allele is essentially certain: this occurs roughly when Nsp > 5.
As N , s or p decreases, the fixation probability decreases, and if
Ns < 0.1 it does not differ (relatively) by more than 10% from
the neutral value p. Perhaps the most striking conclusion is the
very strong effect of selection in influencing fixation probabilities:
as noted below equation (203), selective differences far too small to
be found in the laboratory can nevertheless have a decisive effect
on evolutionary behavior, at least in populations that are not too
small. The same conclusion holds, at least qualitatively, when there
is no dominance (that is h 6= 1

2
), although some minor modifications

to the numerical values are necessary, especially when dominance
is complete (h = 0 or h = 1). Even in the overdominant case
(sh > s > 0) fixation of one of other allele is certain although this
will normally take an extremely long time, and in practical terms one
must then question the appropriateness of the assumptions made,
in particular that there is no mutation and that the population size,
selective differences, and dominance relationship remain unchanged
throughout the entire fixation process.

The complete solution of the forward equation (215), with a(x)
and b(x) defined by (299) and (269), is very complex. Nevertheless
solutions were found by Kimura (1955a, b, c; 1957) initially for the
no dominance case and subsequently for the general case. Unfor-
tunately the very complexity of the solutions makes examination of
their implications difficult.
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Fixation time properties

Despite the very complex form of f(x; t) referred to at the end of the
previous section, a rather simple expression exists for the function
t̄(x; p), defined in equation (234), and since this function summa-
rizes perhaps the most important features of the transient behavior
of the process, we now compute it for the selective model we are
considering. All that is required to do this is to substitute (299)
and (269) into the general formulae (231) and (232). For h = 1

2
we

get

t̄(x; p) = 2P0(p){αx(1− x)}−1{exp(αx)− 1}, 0 ≤ x ≤ p

t̄(x; p) = 2P1(p){αx(1− x)}−1{1− exp(−α(1− x))}, p ≤ x ≤ 1
(304)

where P1(p) is found from (303) and P0(p) = 1 − P1(p). For the
Markov chain defined by (63) and (201), this implies that the mean
number of generations for which there are j = 2Nx A1 alleles, given
an initial number k = 2Np, is approximately

t̄k,j = 2{exp(−2p)− exp(−α)}{exp(αx)− 1}
× [αx(1− x){1− exp(−α)}]−1 (j ≤ k),

t̄k,j = 2{1− exp(−αp)}{1− exp−α(1− x)}
× [αx(1− x){1− exp(−α)}]−1 (j ≥ k).

(305)

The mean time for fixation is found jointly from (230) and (304),
but unfortunately no explicit evaluation of the integrals is possible,
and numerical computation is necessary. There is, however, one
case where useful progress can be made. If α and p are jointly
sufficiently large so that fixation of the favored allele can be taken
as being almost certain, we get

t̄(x; p) ≈ 0, 0 ≤ x ≤ p

t̄(x; p) ≈ 2{αx(1− x)}−1, p ≤ x ≤ 1− 4α−1,

t̄(x; p) ≈ 2{αx(1− x)}−1{1− exp−α(1− x)}, 1− 4α−1 ≤ p ≤ 1.
(306)

The first equation shows that in the case considered, the frequency
of the favored allele spends negligible time less than its initial value.
The second equation is perhaps the most interesting. Converting
to generations, it implies that in the Markov chain the mean time
spent in the frequency range (x1, x2) where p ≤ x1 < x2 ≤ 1−4α−1,
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is approximately
x2∫

x1

{
1
2
sx(1− x)

}−1
dx

generations. This is identical to the value (14) found for the corre-
sponding deterministic process, and we can conclude that the be-
havior of the process (p, 1 − 4α−1) is “quasi-deterministic”. When
the frequency exceeds 1 − 4α−1 the deterministic value no longer
gives an adequate guide to the stochastic behavior. In particular,
the mean number of generations (in the Markov chain) for which
x = 1 − i(2N)−1, for small integers i, is essentially equal to the
“neutral” value 2. This is severely overestimated by the determin-
istic formula, and clearly at this stage of the process selective forces
have become of secondary importance, and random sampling almost
wholly determines the gene frequency behavior.

For general values of h in (0, 1) the expressions (231) and (232)
do not simplify readily. However, the general behavior just noted
for the no dominance case continues to apply. Quasi-deterministic
behavior obtains for sufficiently large p and α, at least until the
frequency x of A1 approaches unity, when selective forces once more
can be ignored. The value of x where this occurs will depend to
some extent on the level of dominance but will not differ materially
from the value 1− 4α−1 found in the no dominance case.

The value k = 1 is of particular interest. Here we may approxi-

mate the probability P1{(2N)−1} by (2N)−1
( 1∫

0

ψ(y) dy
)−1

.

We turn now to mean absorption times conditional on eventual
fixation (or loss) of a specified allele. The formulae appropriate to
calculate this are (248) and (249) or (250) and (251). Perhaps the
case of greatest interest is when 0 < h < 1 and the condition is
made that the favored allele fixes. When h = 1

2
, (248) and (249)

give

t∗(x; p) = 2e−αx{1− e−α(1−p)}{eαx − 1}2

× [αx(1− x){1− e−α}{eαp − 1}]−1, 0 ≤ x ≤ p,(307)

t∗(x; p) = 2{eαx − 1}{eα(1−x) − 1}[αx(1− x){eα − 1}−1, p ≤ x ≤ 1.
(308)
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Similarly, if the condition is made that eventually A1 is lost,

t∗∗(x; p) = 2{eαx − 1}{eα(1−x) − 1}[αx(1− x){eα − 1}]−1,

0 ≤ x ≤ p, (309)

t∗∗(x; p) = 2e−α(1−x){1− e−αp}{eα(1−x) − 1}2

× [αx(1− x){1− e−α}{eα(1−p) − 1}]−1, p ≤ x ≤ 1.(310)

There are several interesting points about these equations. First,
the value of t∗(x; p) for x ≥ p is identical to that of t∗∗(x; p) for
x ≤ p. This can be explained using time-reversal properties. The
second point concerns the nature of the formula for t∗(x; p) for very
small p, or correspondingly t∗∗(x; p) for very large p, and is relevant
when considering a selectively favored new mutant destined for fixa-
tion. We observe that t∗(x; p) is symmetric about x = 0.5; the mean
time spent in any interval (x, x+ δx) is the same as the mean time
spent in (1−x−δx, 1−x). Even more surprisingly, t∗(x; p) remains
unchanged if α is replaced by −α, so that a selectively disadvanta-
geous mutant, if destined for fixation, spends as much time, on the
average, in any frequency range as a corresponding selectively ad-
vantageous mutant destined for fixation. This remarkable fact will
be reconsidered later in the light of time-reversal properties. It is
indeed easy to see that the entire behavior of the conditional process
is independent of the sign of s, since the diffusion coefficient b∗(x),
calculated from (255) and (269), is independent of s while the drift
coefficient a∗(x), calculated from (254), (299), and (303), is

a∗(x) = 1
2
αx(1− x)/tanh

(
1
2
αx
)
.

Clearly a∗(x) is independent of the sign of α. However, despite the
symmetry of t∗(x) around x = 1

2
, it is not true that a∗(x) = a∗(1−x).

For arbitrary levels of dominance, (249) shows that with p =
(2N)−1,

t∗(x; (2N)−1) = 2
(
b(x)ψ(x)

1∫
0

ψ(y) dy
)−1

x∫
0

ψ(y) dy

1∫
x

ψ(y) dy,

(311)
where ψ(y) is defined by (302). If this expression is written more
fully as t∗(x;α, h, (2N)−1), it follows that

t∗(x;α, h, (2N)−1) = t∗(1− x;α, 1− h, (2N)−1). (312)
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This implies that conditional mean fixation time properties for a
favored allele are the same as those for the corresponding disad-
vantageous allele, provided the dominance relation is reversed. This
generalizes the conclusion just reached for the case of no dominance.

One-way mutation

We turn now to the diffusion approximation to the one-way mutation
Markov chain model (63), where A1 mutates to A2 (at rate u), with
no reverse mutation. The drift and diffusion coefficients for the
diffusion process approximating this Markov chain are

a(x) = −1
2
θx, b(x) = x(1− x), (313)

where θ = 4Nu. Clearly A1 eventually becomes lost from the pop-
ulation and interest centers entirely on properties of the time until
this loss occurs. These properties are defined in large measure by
the function t(x; p), and insertion of the coefficients (313) into (237)
and (238) gives this function immediately. The values so calculated
are given in (66), where allowance must be made for the fact that
the time-scale assumed there assumes unit time for one generation.
Perhaps the case of most interest is when p = (2N)−1, so that, to a
close approximation, the mean time that A1 exists in the population
is

t̄{(2N)−1} ≈
1∫

(2N)−1

2y−1(1− y)θ−1 dy (314)

generations. This is of order 2 log(2N) generations for moderate
values of θ: a new mutation A1 will not, on average, remain in the
population for very long, or to attain a high frequency, if there is no
recurrent mutation A2 → A1.

The process we are considering, since it admits the possibility
of only two alleles, is perhaps of limited interest. However, several
of its properties throw considerable light on important features of
the infinitely many alleles model (119). Some of these were already
given in (125) and (126). It is clear that in the infinitely many alleles
model we may normally expect several low-frequency alleles in the
population. For example if θ = 1, 2N = 106, there will typically
be about fifteen alleles present in the population at any time, and
of these about ten will have a frequency less than 0.01. If θ is
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small enough the most likely situation is where there is one allele at
high frequency together with several alleles at a very low frequency.
This is confirmed by the calculations following from the expression
(128). Thus for θ = 0.1 the probability that there exists an allele
with frequency greater than 0.99 is about 0.63. For larger values
of θ (θ > 1 approximately) it becomes rather unlikely that such a
high-frequency allele will exist, and the most likely configuration is
one where a number of alleles exist at low but unequal frequencies.
In all cases the least likely situation is one where two, three or four
alleles exist with approximately equal frequencies. These arguments
suggest an approach to testing whether a neutral model such as (119)
and not, for example, one involving selection is adequate to explain
observed allelic frequencies. This approach is discussed later in these
notes.

There are two further points that are of interest in considering
the model (119) and its evolutionary behavior. The first concerns
the nature of the boundary x = 1 for the two allele model origi-
nally considered. Use of (313) in (264) shows that this boundary is
entrance if θ ≥ 1. This implies that it is impossible to reach this
boundary by diffusion from the interior of (0, 1) in this case. It is
therefore impossible to consider behavior conditional on the require-
ment that this boundary is reached, and further it is unnecessary
to impose the condition that the boundary is not reached and then
consider conditional behavior: this latter condition is already im-
plicit and formulae such as (314) apply immediately. When θ < 1
the boundary x = 1 is regular and hence attainable and now new be-
havior arises under the condition that this boundary is not reached.
Again assuming p = (2N)−1 we find that (314) must be replaced,
conditional on x = 1 not being reached, by

t̄{(2N)−1} =

1∫
(2N)−1

2y−1(1− y)1−θ dy (315)

generations. The integrand in (315) has the usual interpretation
that its integral over any frequency range provides the mean time
that the allele frequency spends in this range before the allele is
eventually lost.

The second point concerns the frequency of the most frequent
allele. The argument that led to (128) shows that for 0.5 ≤ x ≤ 1 the
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probability density function of the frequency of the most frequent
allele in the infinitely many alleles model is, at equilibrium,

f(x) = θx−1(1− x)θ−1. (316)

For values of x less than 0.5 a deeper argument is clearly required:
nevertheless the probability density function of the most frequent
allele can be found for these values also.

Two-way mutation

Suppose now in the model (63) that mutation both from A1 to A2 (at
rate u) and from A2 to A1 (at rate v) occurs, with no selection. As we
have already seen, there will now exist a stationary distribution for
the frequency x of A1 for which we already have an exact expression
(77) for the mean and an approximation expression (78) for the
variance.

Our aim now is to approximate the entire distribution by diffusion
methods. The drift and diffusion coefficients are found from (270)
(putting α = 0) and (269) and then (244) leads to the stationary
distribution

f(x) =
Γ{2β1 + 2β2}
Γ{2β1}Γ{2β2}

x2β2−1(1− x)2β1−1. (317)

The mean and variance of this distribution are β2/(β1 + β2) and
β1β2/{(β1+β2)

2(2β1+2β2+1)} respectively, and these agree with the
exact and approximate values given in (77) and (78), once allowance
is made for a change of scale.

This stationary distribution allows a third derivation of equations
(79) and (80). If u = v and 4Nu = θ, then 2β1 = 2β2 = θ and thus

f(x) =
Γ(2θ)

Γ(θ)Γ(θ)
xθ−1(1− x)θ−1.

From this, the probability that two genes drawn at random from
the population are of the same allelic type is∫ 1

0

f(x){x2 + (1− x)2} =
1 + θ

1 + 2θ
, (318)

in agreement with (79) and (80).
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The general shape of the curve (317) is clear enough. For small
β1 and β2, that is small mutation rates and/or population sizes,
most of the probability mass is in the extremes of the distribution,
so that the most likely situation is one where one or other allele is at
a low frequency or is even temporarily absent from the population.
When β1 and β2 are large the variance becomes small and only small
deviations are likely from the mean.

When selection is also allowed, together with two-way mutation,
there will still exist a stationary distribution, although its form is
naturally more complicated than that in (317). Use of the complete
expressions (269) and (270) gives, from (244), the formula

f(x) = const x2β2−1(1− x)2β1−1 exp{2αhx− α(2h− 1)x2} (319)

for this distribution, where the constant is a function of β1, β2, α,
and h and may be found in principle by normalization.

Time-reversal and age properties

It is interesting that information about the past behavior of diffu-
sion processes allowing a stationary distribution can be obtained by
determining properties of the future behavior. We should therefore
be able to use some of the conclusions reached above to discuss past
behavior of various processes, and in particular to find properties of
the “age” of an allele.

The time-reversal property states that for any diffusion on [0, 1]
admitting a stationary distribution, the probability of any sample
path leading from x (at time 0) to y (at time t) is equal to that of the
“mirror-image” path leading from y (at time −t) to x (at time 0).
Unfortunately this observation is not immediately useful for several
questions of interest in population genetics, since these questions
refer to processes for which either the boundary {0}, or the boundary
{1}, or both, are accessible absorbing states of the diffusion process,
and thus for which no stationary distribution exists. This problem
can be overcome in the following way.

Suppose that {0} is an absorbing state but that {1} is not: this
will occur in practice, for example, if there is mutation from A1 to
A2 but no reverse mutation. Now introduce mutation from A2 to
A1 at rate ε: a stationary distribution now exists and reversibility
arguments apply. In particular, given a current value x for the
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frequency of A1, the distribution of the time (in the future) until
{0} is next reached is identical to that of the time (in the past) that
it was last left. Now let ε → 0: the distribution of the time (in
the future) until the frequency reaches 0 converges to that applying
when ε = 0. The limiting distribution is then identical to the age
distribution of an allele which arose as a unique new mutation and
whose current frequency is x. This argument can be made more
precise by introducing a “return” process whereby the frequency
of A1 is returned from 0 to δ (δ > 0) whenever 0 is reached: in
practice we put δ = (2N)−1 to correspond to the frequency of a new
mutant. We now give some examples of the conclusions reached by
this argument.

Consider first the case of no selection or mutation. Assume the
allele A1 arose by a unique mutation in an otherwise pure A2A2

population and is now observed with frequency x. The distribution
of its age is thus the distribution of its time until loss, conditional
on the event that eventual loss does occur. This distribution can be
found by centering attention on A2 (with current frequency 1 − x)
rather than A1, and is then given by (298) with p = 1−x. The mean
age can be found either through this distribution or alternatively by
replacing p by 1 − x in (293). This leads to a neutral theory mean
age of −4Nx(1− x)−1 log x generations. The variance of the age is
found by putting p = 1− x in (296).

A parallel formula can be found when we assume fitness values
1 + s for A1A1, 1 + 1

2
s for A1A2 and 1 for A2A2. Use of (309) (with

p = x) shows that the mean age of A1, given that it is currently
observed with frequency x, is

x∫
0

4N [α{eα − 1}]−1{eαy − 1}{eα(1−y) − 1}{y(1− y)}−1 dy

+

1∫
x

4N{1− e−αx}[α{1− e−α}{eα(1−x) − 1}]−1e−α(1−y){eα(1−y) − 1}2

× {y(1− y)}−1 dy (320)

generations. This converges to the neutral theory expression as α→
0, as we expect, and the form of the integrand allows calculation of
the mean time, in the past, that the frequency of A1 assumed a
value in any arbitrary interval (y1, y2).
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Suppose now A1 mutates to A2 at rate u with no reverse muta-
tion. If one initial A1 gene occurred by a unique mutation and the
frequency of A1 is currently observed at x, the mean age of A1 is,
from (66),

4N(1− θ)−1

x∫
0

y−1{(1− y)θ−1 − 1} dx

+ 4N(1− θ)−1{1− {(1− x)1−θ}
1∫

x

(1− y)θ−1 dy (321)

generations. A case of particular interest is that for which x = 1,
corresponding to temporary fixation of A1: this evaluation is allowed
only when θ < 1.

It is also possible to consider the mean age of A1 conditional on
the requirement that the frequency of A1 was never unity in the
past. This is identical to the mean time for loss of A1 given that
its future frequency never achieves the value unity. This is given
by (321) for θ > 1, since then the condition that the frequency of
A1 never reaches unity is automatically satisfied. For θ < 1 the
probability that the frequency of A1 never reaches unity given a
current value x is found from (224) to be (1 − x)1−θ. Use of (250)
and (251) then shows that the conditional mean age of A1 is

x∫
0

4Ny−1(1− θ)−1{1− (1− y)1−θ} dy

+

1∫
x

4Ny−1(1− θ)−1(1− y)1−θ{(1− x)θ−1 − 1} dy. (322)

This reduces to the expression (315) for x = (2N)−1.
More “age” properties of this model will be considered by Dr.

Joyce.

Multi-allele diffusion processes

In this section we consider diffusion approximations to finite Markov
chain M -allele models of the form (115).
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The simplest version of the model (115) arises when the function
ψi takes the value Xi/2N . It is clear that in this Markov chain
model the probability of fixation of any allele is initial frequency,
and we also have the eigenvalue formula (116) concerning the rate
of decrease of the probability that j or more alleles exist at time t.
To obtain further results we turn to the diffusion approximation to
(115).

We write xi = Xi/2N (i = 1, 2, . . . ,M − 1) and let δxi be the
change in xi from one generation to the next. Then elementary
theory shows that, given x1, . . . , xM−1,

E(δxi) = 0, Var(δxi) = (2N)−1xi(1− xi),

and
Covar(δxi, δxj) = −(2N)−1xixj.

These values lead to the following partial differential equation for
the joint density function f = f(x1, . . . , xM−1; t) of x1, . . . , xM−1 at
time t, where unit time corresponds to 2N generations:

∂f

∂t
= 1

2

M−1∑
i=1

∂2f

∂x2
i

{xi(1− xi)}

−
∑
i<j

∑ ∂2f

∂xi∂xj

{xixj}.

This is a generalization of equation (274) and admits an eigenfunc-
tion solution generalizing (275). The corresponding backward equa-
tion is

∂f

∂t
= 1

2

∑
i

pi(1− pi)
∂2f

∂p2
i

−
∑
i<j

∑
pipj

∂2f

∂pi∂pj

,

where pi is the initial value of xi. This equation may be used to find
various fixation probabilities. The probability π (= π(p1, p2, . . . , pM−1))
of any fixation event satisfies

1
2

∑
pi(1− pi)

d2π

dp2
i

−
∑
i<j

∑
pipj

d2π

dpidpj

= 0, (323)

subject to the appropriate boundary conditions. For example, the
probability that Ai eventually fixes satisfies (323) together with the
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boundary conditions

π(p1, . . . , pM−1) = 1 if pi = 1,

π(p1, . . . , pM−1) = 0 if pj + pm + . . .+ pu = 1 (j,m, . . . , u 6= i).

The solution of these equations is π = pi, which we know also to be
exactly correct for the model (115) with ψi = Xi/2N . Suppose now
that we wish to find the probability π that ultimately Ai and Aj are
the last two alleles to exist. Here the boundary conditions are

π(p1, . . . , pM−1) = 1 if pi + pj = 1,

π(p1, . . . , pM−1) = 0 if pm + ps + . . .+ pu = 1 (m, s, . . . , u 6= i, j),

and the solution of (323) satisfying these conditions is

π = pipj{(1− pi)
−1 + (1− pj)

−1}.

In the case M = 3 this shows, for example, that the probability that
A1 is the first allele lost is

p2p3{(1− p2)
−1 + (1− p3)

−1}.

Similar probabilities may be found for other fixation events.
We turn now to questions concerning the time until various fix-

ation events occur. The development is easiest when M = 3, so we
discuss the analysis in detail in this case only, and quote results for
larger values of M .

For the case M = 3, define Ti as the time required until exactly i
(i = 1, 2) alleles exist in the population. We first find an expression
for E(T1). Conditional on the event that A1 is the last remaining
allele, the mean of T1 is

E(T1 | A1) = 2p−1
1 (1− p1) log(1− p1),

from (293). Since the probability is p1 that indeed A1 is the last
remaining allele we have

E(T1) = −2[(1−p1) log(1−p1)+(1−p2) log(1−p2)+(1−p3) log(1−p3)].

Clearly this value can be extended immediately to the case of an
arbitrary number M alleles to get

E(T1) = −2
∑

(1− pi) log(1− pi). (324)
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It is equally straightforward to use the analysis leading to (296)
to find an expression for the variance of T1.

In the three-allele case we find E(T2) as follows. The event T2 ≤
t implies that, at time t, at least one pi value is zero. Standard
probabilistic formulae for unions of events give

E(T2) = −2
[∑

pi log pi +
∑

(1− pi) log(1− pi)
]
. (325)

In the particular case pi = 1/3 these formulae give

E(T1) ∼ 3.2N generations, E(T2) ∼ 1.6N generations.

Littler (1975) shows that in the M -allele case,

E(Ti) = −2
( i∑

s=1

(−1)i−s

(
M − 1− s
i− s

)(∑
(1− pi1 − . . .− pis

)
× log(1− pi1 − . . .− pis)

))
(326)

where the inner sum is taken over all possible values 1 ≤ i1 < i2 <
. . . < is ≤ M . This reduces to (324) when i = 1 and generalizes
(325) to arbitrary M when i = 2. It is of some interest to note that
if pi = M−1,

lim
M→∞

E(Tj) = 2/j, j = 1, 2, . . . . (327)

These conclusion may be compared to the “eigenvalue” expression
(116), and this comparison shows that the eigenvalues give a poor
indication of the way in which E(Tj) changes as a function of j.

Inference procedures

Estimating θ

The notes above show that the parameter θ arises in many popu-
lation genetics formulae, particularly those in the infinitely many
alleles model. (As discussed by Dr. Joyce, it also arises frequently
in the theory of the infinitely many sites model.) In this section we
discuss the properties of various estimators of this parameter.
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Estimating θ in the infinitely many alleles model

For the Wright–Fisher infinitely many alleles model, equations (143)
and (145) show jointly that to a close approximation, the conditional
distribution of the vector A = (A1, A2, . . . , An) defined before equa-
tion (143), given the value of Kn, is

Prob{A = a|Kn = k} =
n!

|Sk
n| 1a12a2 . . . nan a1!a2! . . . an!

, (328)

where a = (a1, a2, . . . , an). This conditional distribution is exact
for the Moran model, and we use it as the basis of the theory for
estimating θ in infinitely many alleles models.

Equation (328) implies thatKn is a sufficient statistic for θ. Stan-
dard statistical theory then shows that, once the observed value kn

of Kn is given, no further information about θ is provided by the
various aj values, so that all inferences about θ should be carried out
using the observed value kn of Kn only. This includes estimation of
θ or of any function of θ.

Since Kn is a sufficient statistic for θ we can use the probability
distribution in equation (145) directly to find the maximum likeli-

hood estimator θ̂K of θ. It is found that this estimator is the implicit
solution of the equation

Kn =
θ̂K

θ̂K

+
θ̂K

θ̂K + 1
+

θ̂K

θ̂K + 2
+ · · ·+ θ̂K

θ̂K + n− 1
. (329)

Given the observed value kn of Kn, the corresponding maximum
likelihood estimate θ̂kof θ is found by solving the equation

kn =
θ̂k

θ̂k

+
θ̂k

θ̂k + 1
+

θ̂k

θ̂k + 2
+ · · ·+ θ̂k

θ̂k + n− 1
. (330)

Numerical calculation of the estimate θ̂k using (330) is usually nec-
essary.

The estimator implied by (329) is biased, and it is easy to show
that there can be no unbiased estimator of θ. On the other hand
there exists an unbiased estimator of the population homozygosity
probability 1/(1+θ). If this estimator is denoted by g(Kn), equation
(145) shows that

n∑
k=1

|Sk
n|θkg(k)

Sn(θ)
=

1

1 + θ
,
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where |Sk
n| is the absolute value of a Stirling number, defined below

equation (145). From this,

n∑
k=1

|Sk
n|θkg(k) = θ(θ + 2)(θ + 3) · · · (θ + n− 1) .

Since this is an identity for all θ, the expression for g(k) for any
observed value kn of Kn can be found by comparing the coefficients
of θk on both sides of this equation. In particular, when kn = 2,

g(2) =
1
2

+ 1
3

+ · · ·+ 1
n−1

1 + 1
2

+ 1
3

+ · · ·+ 1
n−1

. (331)

Unbiased estimation of 1/(1 + θ) for values of kn larger than 2 is
complicated, and it is then probably more convenient to use instead
the estimator (1+ θ̂K)−1, where θ̂K is found from (329), even though
this estimator is slightly biased.

It is sometimes preferred to estimate (1 + θ)−1 by f , defined in
the notation of equation (149) by

f =
∑

n2
i /n

2. (332)

This is a poor estimate in that it uses precisely that part of the data
that is least informative about (1 + θ)−1. The estimate of θ derived
from f , namely

θ̂f = f−1 − 1, (333)

has been shown to be strongly biased and to have mean square error
approximately six or eight times larger than that of θ̂.

More generally, the only functions of θ allowing unbiased estima-
tion are linear combinations of functions of the form

{(a+ θ)(b+ θ) · · · (c+ θ)}−1 , (334)

where a, b, . . . c are integers with 1 ≤ a < b . . . < c ≤ n − 1. While
this fact derives mathematically from the form of the probability
distribution (145), an argument in support of it, from an empirical
sampling point of view, is as follows.

Suppose for example that kn = 2 and write the unordered num-
bers of genes of the two alleles observed as N1 and n − N1. The
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probability distribution of the pair (N1, n−N1) is identical to that
of N1, and (328) shows that this is

Prob(N1 = n1) =
n!

|S2
n|n1(n− n1)

. (335)

Given the observed values n1 and n − n1, the probability that two
genes taken at random are of the same allelic type is(

n1

2

)
+
(

n−n1

2

)(
n
2

) .

Multiplying this expression by the right-hand side in (335) and sum-
ming over all possible values of n1 gives the estimator (331). A sim-
ilar argument can be used to justify the fact that any function of
the form in (334) admits unbiased estimation.

We now consider an approximation for the mean square error
(MSE) of the estimator θ̂K as defined by (329). Writing the right-

hand side of (329) as ψ(θ̂K) we have Kn = ψ(θ̂K) and also, from
(146), E(Kn) = ψ(θ). Thus by subtraction

Kn − E(Kn) = ψ(θ̂K)− ψ(θ).

A first-order Taylor series approximation for the right-hand side is
(θ̂K − θ)ψ′(θ), so that

Kn − E(Kn) ≈ (θ̂K − θ)ψ′(θ).

Squaring and taking expectations, we get

MSE(θ̂K) ≈ Var(Kn)/ψ′(θ)2. (336)

The variance of Kn is given in (147), and it is immediate that

ψ′(θ) =
n−1∑
j=1

j

(θ + j)2
. (337)

This leads to

MSE(θ̂K) ≈ θ/

n−1∑
j=1

j

(j + θ)2
. (338)

The approximation (338) can be shown to be quite accurate, and we
use it later when comparing estimation of θ in the infinitely many
alleles and the infinitely many sites models.



112

Estimators of θ in the infinitely many sites model

In this section we consider properties of two statistics that in the
neutral case are both unbiased estimators of the parameter θ. As
discussed above, the theory considered in this section concerns only
the case of completely linked segregating sites.

The first unbiased estimator of θ that we consider is that based on
the number Sn of segregating sites. Standard theory (as discussed
by Dr Joyce) shows that the mean of Sn is given by

θ
n−1∑
j=1

1/j = g1θ,

where

g1 =
n−1∑
j=1

1

j
. (339)

We note for future reference that the variance of Sn is

var(Sn) = g1θ + g2θ
2, (340)

where

g2 =
n−1∑
j=1

1

j2
. (341)

Clearly an unbiased estimator of θ is

θ̂S =
Sn

g1

. (342)

Equation (340) implies that the variance of θ̂S is

var(θ̂S) =
θ

g1

+
g2θ

2

g2
1

. (343)

The second unbiased estimator of θ is found as follows. Suppose
that the nucleotide sequences i and j in the sample are compared
and differ at some random number T (i, j) of sites. Then T (i, j) is
an unbiased estimator of θ. It is natural to consider all

(
n
2

)
possible

comparisons of two nucleotide sequences in the sample and to form
the statistic

T =

∑
i<j T (i, j)(

n
2

) . (344)
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Since this is also an unbiased estimator of θ, we think of it as forming
the unbiased estimator θ̂T , defined by

θ̂T =

∑
i<j T (i, j)(

n
2

) . (345)

This estimator of θ was proposed by Tajima (1983). It is a poor
estimator of θ in that its variance, namely,

n+ 1

3(n− 1)
θ +

2(n2 + n+ 3)

9n(n− 1)
θ2 = b1θ + b2θ

2, (346)

does not approach 0 as the sample size n increases. (b1 and b2 are
implicitly defined in this equation.) However, our interest here in
this estimator is that it forms part of a hypothesis testing procedure,
and not as a possible estimator of θ.

Comparison of the properties of the “alleles-based” and the “sites-
based” estimators of θ

It is interesting to compare the estimates of θ based on k (the number
of alleles observed in a sample) and s, (the number of segregating
sites (SNPs) observed in the same sample). To do this we consider
the five (very short) genes below.

T G T A T G C C T G C
T G T A T G C C T G C
T G T A T G C C C G C
T G T A T G C C T G C
T C T A T G C C T G C

Genes 1,2 and 4 are identical, while the remaining two genes are
different from all the others. Thus k, the number of different alleles
in the sample, is 3. Sites 2 and 9 are segregating, so that s = 2.

From (330), the estimate θk is the solution of the equation

3 =
θ̂k

θ̂k

+
θ̂k

θ̂k + 1
+

θ̂k

θ̂k + 2
+

θ̂k

θ̂k + 3
+

θ̂k

θ̂k + 4
, (347)

and numerical methods give θk ≈ 2.21.
From (339) and (342), the estimate θs is

2

1 + 1
2

+ 1
3

+ 1
4

≈ 0.969.
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θ 0.5 1.0 3.0 5.0

n = 50 0.902 0.874 0.891 0.928
n = 100 0.918 0.903 0.960 1.038
n = 500 0.943 0.942 1.047 1.178

Table 2: Values of the ratio Var(θ̂S)/MSE(θ̂K) for selected values of n and θ.

It is interesting to compare the approximate (but accurate) the
mean square error of the standard “alleles-based” estimator given
in (338) to the variance (and also the mean square error) of the
unbiased “sites-based” estimator given in (401). Table 2 compares
these two for a variety of combinations of n and θ. In some cases the
“alleles-based” estimator has the smaller mean square error, while
for other cases the “sites-based” estimator has the smaller mean
square error.

Testing neutrality

Introduction

Almost all the theory discussed so far assumes selective neutrality at
the gene locus considered. In this section we consider the question:
May we in fact reasonably assume selective neutrality at this gene
locus?

The hypothesis of selective neutrality is more frequently called
the “non-Darwinian” theory, and was promoted mainly by Kimura
(1968). Under this theory it is claimed that, whereas the gene sub-
stitutions responsible for obviously adaptive and progressive phe-
nomena are clearly selective, there exists a further class of gene
substitutions, perhaps in number far exceeding those directed by
selection, that have occurred purely by chance stochastic processes.
A better name for the theory would thus be the “extra-Darwinian”
theory, although here we adhere to the standard expression given
above.

In a broader sense, the theory asserts that a large fraction of
currently observed genetic variation between and within populations
is nonselective. In this more extreme sense the theory has been
described as the “neutral alleles” theory, although this term and
the term “non-Darwinian” have been used interchangeably in the
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literature and will be so used here.
This theory has, of course, been controversial, not only among

theoreticians but also among practical geneticists, and the question
whether certain specific substitutions have been neutral has been
argued for decades. We do not refer here to the extensive literature
on this matter.

In statistical terms the neutral theory is the “null hypothesis”
to be tested, and all calculations given here assume that this null
hypothesis is true. Most tests in the current literature relate to
“infinitely many sites” data: here we consider both these tests and
those tests that use “infinitely many alleles” data.

Tests of selection based on the infinitely many alleles model

The first objective tests of selective neutrality based on the infinitely
many alleles model were put forward by Ewens (1972) and Watter-
son (1977). The broad aim of both tests was to assess whether the
observed values {a1, . . . , an} in (328) conform reasonably to what is
expected under neutrality, that is, under the formula (328), given
the sample size n and the observed number k of alleles in the sample.
It is equivalent to use the observed numbers {n1, . . . , nk} defined in
connection with (149) and to assess whether these conform reason-
ably to their conditional probability given n and k, namely,

Prob(n1, n2, . . . , nk|k) =
n!

|Sk
n|k!n1n2 · · ·nk

. (348)

The Ewens and the Watterson testing procedures differ only in
the test statistic employed, and here we discuss only the Watterson
procedure. This uses as test statistic the observed sample homozy-
gosity, defined as

f =
k∑

j=1

n2
j

n2
. (349)

The first aim is to establish what values of f will lead to rejection
of the neutral hypothesis. Clearly, f will tend to be smaller under
selection favoring heterozygotes than under neutrality, since this
form of selection will tend to equalize allele frequencies compared
to that expected for the neutral case, thus tending to decrease f .
If we expect one high-frequency “superior” allele and a collection of
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Species n k n1 n2 n3 n4 n5 n6 n7

willistoni 582 7 559 11 7 2 1 1 1
tropicalis 298 7 234 52 4 4 2 1 1
equinoxalis 376 5 361 5 4 3 3
simulans 308 7 91 76 70 57 12 1 1

Table 3: Drosophila sample data

low-frequency deleterious alleles, f will tend to exceed its neutral
theory value. Thus the hypothesis of neutrality is rejected if f is
“too small” and also if f is “too large”.

To determine how large or small f must be before neutrality is
rejected, it is necessary to find its neutral theory probability dis-
tribution. This may be found in principle from (348). In practice,
difficulties arise with the mathematical calculations because of the
form of the distribution (348), and other procedures are needed.

For any observed data set {n1, . . . , nk}, a computer-intensive ex-
act approach proceeds by taking n and k as given, and summing
the probabilities in (348) over all those n1, n2, . . . , nk combinations
that lead to a value of f more extreme than that determined by the
data. This procedure is increasingly practicable with present-day
computers, but will still be difficult in practice if an extremely large
number of sample points is involved.

An approximate approach is to use a computer simulation to
draw a large number of random samples from the distribution in
(348): Efficient ways of doing this are given by Watterson (1978).
If a sufficiently large number of such samples is drawn, a reliable
empirical estimate can be made of various significance level points.
This was done by Watterson (1978): see his Table 1.

The simulation method allows calculation of tables of E(f |k) and
var(f |k) for various k and n values, which are of independent interest
and are given (for the data of Table 3) in Table 4.

We illustrate this test of neutrality by applying it to particular
data. The data concern numbers and frequencies of different alleles
at the Esterase-2 locus in various Drosophila species and are quoted
by Ewens (1974) and Watterson (1977).

For each set of data we compute f , the observed homozygosity.
Then the exact neutral theory probability P (given in Table 4) that
the homozygosity is more extreme than its observed value may be
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Species f E(f) var(f) P Psim

willistoni 0.9230 0.4777 0.0295 0.007 0.009
tropicalis 0.6475 0.4434 0.0253 0.130 0.134
equinoxalis 0.9222 0.5654 0.0343 0.036 0.044
simulans 0.2356 0.4452 0.0255 0.044

Table 4: Sample statistics, means, variances, and probabilities for the data of
Table 3.

calculated (except for the D. simulans case where the computations
are prohibitive). The simulated probabilities Psim are also given in
Table 4; these are in reasonable agreement with the exact values.
The conclusion that we draw is that significant evidence of selection
appears to exist in all species except D. tropicalis.

We next outline two procedures based on the sample “frequency
spectrum”. Define Ai as the (random) number of alleles in the
sample that are represented by exactly i genes. For given k and n,
the mean value of Ai can be found directly from (328) as

E
(
Ai|k, n

)
=

n!

i(n− i)!

|Sn−i
k−1|
|Sn

k |
. (350)

In this formula the Si
j are values of Stirling numbers of the first

kind as discussed after (145). The array of the E(Ai|k, n) values for
i = 1, 2, . . . , n is the sample conditional mean frequency spectrum,
and the corresponding array of observed values ai is the observed
conditional frequency spectrum. The first approach that we outline
is an informal one, consisting of a simple visual comparison of the
observed and the expected sample frequency spectra. Coyne (1976)
provides an illustration of this approach. In Coyne’s data, n = 21,
k = 10, and

n1 = n2 = · · · = n9 = 1, n10 = 12.

Direct use of (106) shows that given that k = 10 and n = 21,

E
(
Ai | k = 10, n = 21

)
=

21!

i(21− i)!

|S21−i
9 |
|S21

10 |
, (351)

and this may be evaluated for i = 1, 2, . . . , 12, the only possible
values in this case. A comparison of the observed ai values and
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the expected values calculated from (351) is given in Table 5. It
appears very difficult to maintain the neutral theory in the light of
this comparison.

i
ai 1 2 3 4 5 6 7 8 9 10 11 12
E 5.2 2.1 1.1 0.7 0.4 0.2 0.1 0.1 0.0 0.0 0.0 0.0
O 9 0 0 0 0 0 0 0 0 0.0 0.0 1

Table 5: Comparison of expected (E) and observed (O) sample frequency spec-
tra.

A second approach provides a formal test of hypothesis, but fo-
cuses only on the number A1 of singleton alleles in the sample. This
procedure originally assumed selective neutrality and was used to
test for a recent increase in the mutation rate. However, it may
equally well be used as a test of neutrality itself if a constant muta-
tion rate is assumed, especially for any test in which the alternative
selective hypothesis of interest would lead to a large number of sin-
gleton alleles. The procedure may be generalized by using as test
statistic the total number of singleton, doubleton, . . ., j-ton alleles,
leading to a test in which the selective alternative implies a signifi-
cantly large number of low-frequency alleles. A parallel procedure,
using the frequency of the most frequent allele in the data, may also
be used.

We describe here only the test based on the number A1 of single-
ton alleles. The total number k of alleles in the sample is taken as
given, and the test is based on the neutral theory conditional distri-
bution of A1, given k and n. (It is assumed, as is always the case in
practice, that n strictly exceeds k.) This conditional distribution is
independent of θ and is found from (328) to be

Prob(A1 = a|k, n) =
k−1∑
j=a

(−1)j−a |Sn
k−1|

a!(j − a)!|Sn
k |
. (352)

Here Sj
i is again a Stirling number of the first kind. The conditional

mean of A1 is |Sn
k−1|/|Sn

k |, and the distribution (352) is approxi-
mately Poisson, with this mean. This observation enables a rapid
approximate assessment of whether the number of singleton alleles
is significantly large, assuming selective neutrality.
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Tests based on the infinitely many sites model

Introduction

Dr Joyce has introduced the infinitely many sites model, and here
we use results for that model which relate to testing the neutral-
ity hypothesis. Since the complete nucleotide (i.e. DNA) sequences
of genes are now available in large numbers, and since these data
represent an ultimate state of knowledge of the gene, tests of neu-
trality based on infinitely many sites data are increasingly popular.
Although several tests have been proposed that use infinitely many
sites data, here we focus on what is by far the most popular of
these, namely the Tajima (1989) test. The theory for this test is
based on the Watterson (1975) infinitely many sites theory, which
assumes complete linkage (that is, no recombination) between sites.
It is therefore assumed throughout that the data at hand conform
to this assumption. In practice this might mean that the DNA se-
quences in the data relate to a single gene.

As for tests using infinitely many alleles theory, discussed above,
it is assumed in all the calculations in this section that selective
neutrality holds, so that these can be thought of as “null hypothesis”
calculations.

We assume a sample of n aligned sequences. The number Sn

of sites segregating in the sample is not a sufficient statistic for
the central parameter θ describing the stochastic behavior of the
evolution of these sequences. Indeed, there is no simple nontrivial
sufficient statistic for θ for this case. This implies that no direct
analogue of the exact infinitely many alleles tests is possible.

On the other hand, in the infinitely many sites model there are
several unbiased estimators of θ when neutrality holds, as discussed
above. The basic idea of the Tajima test is to form a statistic whose
numerator is the difference between two estimators that are unbi-
ased under selective neutrality, and whose denominator is a neutral
theory estimate of the standard deviation of this difference. Al-
though under neutrality these two observed values of these estima-
tors should tend to be close, since they are both unbiased estimators
of the same quantity, under selection they should tend to differ, since
the estimators on which they are based tend to differ under selection,
and in predictable ways. Thus values of the statistic formed suffi-
ciently far from zero lead to rejection of the neutrality hypothesis.
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The details of the Tajima test, using this fact, are now discussed.

The Tajima test

The Tajima test in effect compares the values of θ̂T and θ̂S, defined
above. Specifically, the procedure is carried out in terms of the
statistic D, defined by

D =
θ̂T − θ̂S√

V̂
, (353)

where V̂ is an unbiased estimate of the variance of θ̂T − θ̂S and is
defined in (355) below. Tajima showed, by using adroit coalescent

arguments, that the variance V of θ̂T − θ̂S is

V = c1θ + c2θ
2, (354)

where

c1 = b1 −
1

g1

, c2 = b2 −
n+ 2

g1n
+
g2

g2
1

.

Since this variance depends on θ, any estimate of this variance de-
pends on a choice of an estimate of θ.

The variance of the estimator θ̂S decreases to 0 as the sample size
increases (although the decrease is very slow), so the Tajima proce-

dure is to estimate the variance of θ̂T − θ̂S by the function of S that
provides an unbiased estimator of the variance (354). Elementary
statistical theory shows that this function is

V̂ =
c1S

g1

+
c2S(S − 1)

g2
1 + g2

. (355)

This is then used in the D statistic given in (353) above.
The next task is to find the null hypothesis distribution of D.

Although D is broadly similar in form to a z-score, it does not
have a normal distribution under the null hypothesis of selective
neutrality. Further, under this hypothesis, its mean is not zero and
its variance is not 1, since the denominator of D involves a variance
estimate rather than a known variance. Further, the distribution of
D depends on the value of θ, which is in practice unknown. Thus
there is no null hypothesis distribution of D invariant over all θ
values, and in general little theoretical knowledge is available about
the null hypothesis distribution of D.
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The Tajima procedure approximates the null hypothesis distri-
bution of D in the following way. First, the smallest value that
D can take arises when there is a singleton nucleotide at each site
segregating. In this case θ̂T is 2Sn/n, and the numerator in D is
then {(2/n)− (1/g1)}Sn. In this case the value of D approaches a,
defined by

a =
{(2/n)− (1/g1)}

√
g2
1 + g2√

c2
, (356)

as the value of Sn approaches infinity.
The largest value that D can take arises when there are n/2

nucleotides of one type and n/2 nucleotides of another type at each
site (for n even) or when there are (n− 1)/2 nucleotides of one type
and (n + 1)/2 nucleotides of another type at each site (for n odd).
In this case the value of D approaches b, defined by

b =
{(n/2(n− 1))− (1/a1)}

√
g2
1 + g2√

c2
(357)

when n is even and the value of Sn approaches infinity. A similar
formula applies when n is odd.

Second, it is assumed, as an approximation, that the mean of D
is 0 and the variance of D is 1. Finally, it is also assumed that the
density function of D is the generalized beta distribution over the
range (a, b), defined by

f(D) =
Γ(α+ β)(b−D)α−1(D − a)β−1

Γ(α)Γ(β)(b− a)α+β−1
, (358)

with the parameters α and β chosen so that the mean of D is indeed
0 and the variance of D is indeed 1. This leads to the choice

α = −(1 + ab)b

b− a
, β =

(1 + ab)a

b− a
.

This approximate null hypothesis distribution is then used to assess
whether any observed value of D is significant.

The various approximations listed above have been examined in
detail in the literature. It appears that the Tajima procedure is
often fairly accurate, although examples can be found where this is
not so. We do not pursue these matters here.
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Complications

The tests of selective neutrality discussed above have all assumed
that a stationary situation exists. However, stationarity typically
takes a long time to be reached in genetic processes, so it is necessary
to consider some time-dependent results and then to see how much
these are relevant to tests of neutrality. The results we use are due
to Griffiths (1979a, b).

Griffiths’ calculations concern the number and frequencies of al-
leles observed in a sample of n genes. These of course depend on
the initial population frequencies chosen as well as on the mutation
rate. At one extreme one can assume that initially only one allelic
type exists in the population and at the other extreme that 2N al-
lelic Many of these properties are found using the time-dependent
frequency spectrum φt(x), which has the form

φt(x) = θx−1(1− x)θ−1
(
1 +

∞∑
i=2

λi(t)ψi(x, θ))gi(p1, p2, . . .)
)

(359)

where the λi(t) are eigenvalues whose values are given below, ψ(x, θ)
is a function of x only and θ and gi(p1, p2, , . . .) is a complicated
function of the initial allelic frequencies p1, p2, . . .. The rate of
convergence of this frequency spectrum to the stationary spectrum
θx−1(1−x)θ−1 depends on the eigenvalues λj(t), which are given by

λi(t) = exp{−1

2
j(j − 1 + θ)t}, j = 2, 3, 4, . . . , (360)

and in particular on the largest eigenvalue exp{−(1 + θ)t}. These
eigenvalues are the limiting case of the discrete configuration values
given in (123) as N →∞, u→ 0, with 4Nu = θ held fixed.

The mean number of alleles in a sample of n genes can be found,
following the same argument as that leading to (150), by evaluation
of

1∫
0

{1− (1− x)n}φt(x) dx. (361)

An explicit expression for this mean is given by Griffiths (1979b,
equation (2.10)), who also provides numerical calculations for vari-
ous r, θ, t, and pj values. We reproduce some representative calcu-
lations in Table 6 for two cases, first where there exists initially a
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t
0.2 0.5 1.0 ∞
(i) (ii) (i) (ii) (i) (ii) (i) & (ii)

0.1 1.31 10.12 1.40 4.62 1.47 2.77 1.57
θ 1.0 4.03 12.39 4.89 7.64 5.49 6.34 5.88

1.5 5.51 13.62 6.74 9.25 7.54 8.18 7.90

Table 6: Mean number of alleles observed in a sample of 200 genes for various
θ, t values. Unit time = 2N generations. Case (i): one initial allele. Case (ii):
many initial alleles of equal frequency. From Griffiths (1979b)

single allele in the population and second where there exist initially
many alleles of equal frequency. We observe that in the former case
the approach to the equilibrium point appears rather more rapid
than in the latter. Griffiths also found properties of two samples,
one in each of two sub-populations, which split apart some time in
the past. In particular he gives formulae the mean number of alleles
common to the two samples at time t after the split and the joint
probability distributions of the sample frequencies of these alleles.

As has been seen above, tests of selective neutrality often reduce
to a comparison of properties of the number of alleles, or of segregat-
ing sites, in a sample to some measure of population homozygosity
(or, equivalently, heterozygosity). Unfortunately, the properties of
the two measures under selection are often similar to their proper-
ties in a selectively neutral case where the population has recently
expanded in size after going through a bottleneck, or at the end of
a selectively induced replacement process at a locus closely linked
to the neutral locus. Thus these tests of selection can be rendered
invalid at times closely following such historical events. Table 6 can
be used to find various properties of the number of alleles a sample
following a bottleneck or a selective sweep, since we might assume,
to a close approximation, that only one allele survives a tight bot-
tleneck or a selective sweep. Table 6 then shows, for example, that
when θ = 1 the mean number of alleles in a sample of 200 genes is
4.89 when N generations have passed after the bottleneck or selective
sweep, about 83% of its stationary mean value of 5.88.

The properties of the sample homozygosity should be close to
those of the population homozygosity. We take take 0 to be the
time of the bottleneck and the population homozygosity at this time
to be 1. Denoting the mean homozygosity at time t diffusion time
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units by F (t), equation (122) shows that

F (t) =
1

1 + θ
+

θ

1 + θ
exp−(1+θ)t. (362)

Thus F (t) depends only on the leading eigenvalue in the set (360)
whereas the mean number of alleles depends on all the eigenvalues.
When θ = 1 the value of F (t) arising N generations after the bottle-
neck is 0.684, so that the mean heterozygosity at this time is 0.316.
This is about 63% of its stationary value. The comparison of this
with the corresponding value for the mean number of alleles in the
sample is then relevant to the effect of a bottleneck on a test for
selective neutrality conducted N generations after the bottleneck or
the selective sweep.
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Griffiths, R.C., Tavaré, S.: The ages of mutations in gene trees. Ann. Appl. Probab.
9, 567–590, (1999).

Griffiths, R.C., Tavaré, S.: The genealogy of a neutral mutation. In Highly Structured
Stochastic Systems. Green, P., Hjort, N., Richardson, S. (eds.), 393–412 (2003).

Harris, H: The Principles of Human Biochemical Genetics (third revised edition). Am-
sterdam: Elsevier, (1980).

Hoppe, F.: Polya-like urns and the Ewens sampling formula. J.Math. Biol. 20, 91–99
(1984).

Hoppe, F.: Size-biased sampling of Poisson–Dirichlet samples with an application to
partition structures in population genetics. J. Appl. Prob. 23, 1008–1012 (1986).

Hoppe, F.: The sampling theory of neutral alleles and an urn model in population
genetics. J. Math. Biol. 25, 123–159 (1987).

Karlin, S., McGregor, J.: Direct product branching processes and related induced
Markoff chains. I. Calculations of rates of approach to homozygosity. In: Bernoulli
(1723), Bayes (1773), Laplace (1813): Anniv. Vol., LeCam, L., Neyman, J., (eds.),
pp. 111–145. Berlin, Heidelberg, New York: Springer, 1965.

Karlin, S., McGregor, J.L.: Addendum to a paper of W. Ewens. Theoret. Pop. Biol.
3, 113–116 (1972).



127

Kelly, F.P.: On stochastic population models in genetics. J. Appl. Prob. 13, 127–131
(1976).

Kelly, F.P.: Exact results for the Moran neutral allele model. J. Appl. Prob. 9, 197–
201 (1977).

Kimura, M.: Solution of a process of random genetic drift with a continuous model.
Proc. Natl. Acad. Sci. 41, 144–150 (1955a).

Kimura, M.: Random drift in a multi-allelic locus. Evolution 9, 419–435 (1955b).

Kimura, M.: Stochastic processes and distribution of gene frequencies under natural
selections. Cold Spring Harbor on Quant. Biol. 20, 33–53 (1955c).

Kimura, M.: Random genetic drift in a tri-allelic locus — exact solution with a con-
tinuous model. Biometrics 12, 57–66 (1956a).

Kimura, M.: A model of a genetic system which leads to closer linkage under natural
selection. Evolution 10, 278–287 (1956b).

Kimura, M.: Some problems of stochastic processes in genetics. Ann. Math. Stat. 28,
882–901 (1957).

Kimura, M.: Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite pop-
ulation due to steady flux of mutation. Genetics 61, 893 (1969).

Kimura, M.: Theoretical foundations of population genetics at the molecular level.
Theoret. Pop. Biol. 2, 174–208 (1971).

Kimura, M., Crow, J. F.: The number of alleles that can be maintained in a finite
population. Genetics 49, 725–738 (1964).

Kingman, J. F. C.: Random discrete distributions. J. Roy. Stat. Soc. B. 37, 1–22
(1975).

Kingman, J. F. C.: Random partitions in population genetics. Proc. Roy. Soc. Lon-
don Ser. A 361, 1–20 (1978).

Kingman, J.F.C.: The coalescent. Stoch. proc. Applns. 13, 235–248, (1982).

Littler, R. A.: Loss of variability at one locus in a finite population. Math. Bio. 25,
151–163 (1975).

McCloskey, J.W.: A model for the distribution of individuals by species in an envi-
ronment. Unpublished PhD. thesis, Michigan State University, (1965).

Moran, P. A. P.: Random processes in genetics. Proc. Camb. Phil. Soc. 54, 60–71
(1958).



128

Moran, P. A. P., Watterson, G. A.: The genetic effects of family structure in natural
populations. Aust. J. Biol. Sci. 12, 1–15 (1958).

Moran, P.A.P.: The Statistical Processes of Evolutionary Theory, Oxford: Clarendon
Press, (1962).

Tajima, F.: Evolutionary relationship of DNA sequences in finite populations. Genet-
ics 105, 437–460 (1983).

Tajima, F.: Statistical methods for testing the neutral mutations hypothesis by DNA
polymorphism. Genetics 123, 585–595 (1989).
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Age-ordered alleles: frequencies and ages

Introduction

The current direction of interest in population genetics is a ret-
rospective one, looking backwards to the past rather than looking
forward into the future. This change of direction is largely spurred
by the large volume of genetic data now available at the molecular
level and a wish to infer the forces that led to the data observed.
This data driven modern perspective will be the focus of the notes
that follow.

The material in this section should provide a useful transition
from the prospective view to the retrospective view. The age of an
allele refers to the past yet many of the results on ages of alleles are
derived using the prospective machinery developed in the lectures
of Dr. Ewens.

The material in this section covers both sample and population
formulae relating to the infinitely many alleles model. Some re-
sults are diffusion approximations, and for them the definition of
θ depends on the population model implicitly discussed. Various
formulae for the Moran model are exact.

Frequencies

We first discuss allelic frequencies, for which finding “age” proper-
ties amounts to finding size-biased properties. Kingman’s (1975)
Poisson–Dirichlet distribution, which arises in various allelic fre-
quency calculations, is not user-friendly. This makes it all the
more interesting that a size-biased distribution closely related to it,
namely the GEM distribution, named for Griffiths, (1980), Engen
(1975) and McCloskey (1965), who established its salient properties,
is both simple and elegant. More important, it has a central inter-
pretation with respect to the ages of the alleles in a population. We
now describe this distribution.

Suppose that a gene is taken at random from the population. The
probability that this gene will be of an allelic type whose frequency
in the population is x is just x. In other words, alleles are sampled
by this choice in a size-biased way. The frequency spectrum (127)
shows the probability that there exists an allele in the population
with frequency between x and x+δx. It follows that the probability
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the gene chosen is of this allelic type is θx−1(1− x)θ−1xδx = θ(1−
x)θ−1δx. From this, the density function f(x) of the frequency of
this allele is given by

f(x) = θ(1− x)θ−1. (363)

Suppose now that all genes of the allelic type just chosen are re-
moved from the population. A second gene is now drawn at random
from the population and its allelic type observed. The frequency of
the allelic type of this gene among the genes remaining at this stage
can be shown to also be given by (363). All genes of this second
allelic type are now also removed from the population. A third gene
then drawn at random from the genes remaining, its allelic type ob-
served, and all genes of this (third) allelic type removed from the
population. This process is continued indefinitely. At any stage,
the distribution of the frequency of the allelic type of any gene just
drawn among the genes left when the draw takes place is given by
(363). This leads to the following representation. Denote by wj the
original population frequency of the jth allelic type drawn. Then
we can write w1 = x1, and for j = 2, 3, . . .,

wj = (1− x1)(1− x2) · · · (1− xj−1)xj, (364)

where the xj are independent random variables, each having the
distribution (363). The random vector (w1, w2, . . .) then has the
GEM distribution.

All the alleles in the population at any time eventually leave the
population, through the joints processes of mutation and random
drift, and any allele with current population frequency x survives
the longest with probability x. That is, since the GEM distribution
was found according to a size-biased process, it also arises when al-
leles are labeled according to the length of their future persistence in
the population. Reversibility arguments then show that the GEM
distribution also applies when the alleles in the population are la-
beled by their age. In other words, the vector (w1, w2, . . .) can be
thought of as the vector of allelic frequencies when alleles are ordered
with respect to their ages in the population (with allele 1 being the
oldest).

The elegance of many age-ordered formulae derives directly from
the simplicity and tractability of the GEM distribution. We now give
two examples. First, the GEM distribution shows immediately that
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the mean population frequency of the oldest allele in the population
is

θ

∫ 1

0

x(1− x)θ−1 = 1/(1 + θ), (365)

and more generally that the mean population frequency of the jth
oldest allele in the population is

1

1 + θ

( θ

1 + θ

)j−1

.

Second, the probability that a gene drawn at random from the
population is of the type of the oldest allele is the mean frequency
of the oldest allele, namely 1/(1+ θ), as just shown. More generally
the probability that n genes drawn at random from the population
are all of the type of the oldest allele is

θ

∫ 1

0

xn(1− x)θ−1 dx =
n!

(1 + θ)(2 + θ) · · · (n+ θ)
.

The probability that n genes drawn at random from the popula-
tion are all of the same unspecified allelic type is

θ

∫ 1

0

xn−1(1− x)θ−1 dx =
(n− 1)!

(1 + θ)(2 + θ) · · · (n+ θ − 1)
,

in agreement with (148). From this, given that n genes drawn at
random are all of the same allelic type, the probability that they are
all of the allelic type of the oldest allele is n/(n+ θ).

The GEM distribution is of course a diffusion approximation and
the above results are diffusion approximations. The distribution has
a number of interesting mathematical properties. It is invariant un-
der size-biased sampling, and this property has been used by Hoppe
(1987) to derive the frequency spectrum (127). It also has impor-
tant properties with respect to the concepts of random deletions and
non-interference, which were also exploited by Hoppe (1986).

It will be expected that various exact results hold for the Moran
model, with θ defined as 2Nu/(1 − u). The first of these is an ex-
act representation for of the GEM distribution, analogous to (364).
This has been provided by Hoppe (1987). Denote by N1, N2, . . .
the numbers of genes of the oldest, second-oldest, . . . alleles in the
population. Then N1, N2, . . . can be defined in turn by

Ni = 1 +Mi, i = 1, 2, . . . , (366)
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where Mi has a binomial distribution with index 2N − N1 − N2 −
· · ·−Ni−1−1 and parameter xi, where x1, x2, . . . are independently
and identically continuous random variables each having the density
function (363). Eventually N1 + N2 + ....Nk = 2N and the process
stops, the final index k being identical to the number K2N of alleles
in the population.

It follows directly from this representation that the mean of N1

is

1 + (2N − 1)θ

∫ 1

0

x(1− x)θ−1 dx =
2N + θ

1 + θ
.

The mean of the proportion N1/(2N) is 1/{1 + (2N − 1)u}, and is
very close to the diffusion approximation 1/{1 + θ}.

If there is only one allele in the population, so that the population
is monomorphic, this allele must be the oldest one in the population.
The above representation shows that the probability that the oldest
allele arises 2N times in the population is

Prob (M1 = 2N − 1) = θ

∫ 1

0

x2N−1(1− x)θ−1 dx,

and this reduces to the monomorphism probability (153).
More generally, Kelly (1977) has shown that for the Moran model,

the probability that the oldest allele is represented by j genes in the
sample is given exactly by

θ

2N

(
2N

j

)(
2N + θ − 1

j

)−1

. (367)

The case j = 2N considered above is a particular example of (367),
and the mean number (2N + θ)/(1 + θ) follows from (367).

We now turn again to approximations deriving from diffusion
methods. A question of some interest is to find the probability
that the oldest allele in the population is also the most frequent.
By time reversibility arguments (not discussed in detail here) this
is also the probability that the most frequent allele in the popu-
lation will survive the longest into the future, and in turn this is
the mean of the frequency of the most frequent allele. Unfortu-
nately, the distribution of the frequency of the most frequent allele
is very complicated, taking different functional forms in the intervals
(1, 1/2), (1/2, 1/3), (1/3, 1/4), . . .. However, the frequency spectrum
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allows one immediate calculation. If there is an allele in the popu-
lation with frequency in 1/2, 1), it must be the most frequent allele.
Thus the frequency spectrum (127) shows that the density function
of the most frequent allele is θx−1(1− x)θ−1 in the interval (1/2, 1).
Thus a lower bound for the mean frequency of the most frequent
allele is ∫ 1

1/2

x[θx−1(1− x)θ−1]dx = (1/2)θ,

which is useful for small θ but not of much value for larger θ. Nu-
merical calculations are given by Watterson and Guess (1977) for a
range of θ values, who provide also the upper bound 1−θ(1−θ) log 2.
For example, when θ = 1 the mean frequency of the most frequent
allele is 0.624, which may be compared with the mean frequency of
the oldest allele (which must be less than the mean frequency of the
most frequent allele) of 0.5.

Ages

We now turn to “age” questions. Some for these follow immediately
from our previous calculations. For example, the mean time for all
alleles existing in the population at any time to leave the population
is given in (130), and again by reversibility arguments this is the
mean time, into the past, that the oldest of these originally arose
by mutation. This is is then the mean age of the oldest allele in the
population, given on a “generations” basis. Since we refer to this
calculation with reference to the mean age of the oldest allele in the
population we repeat it here, with this new interpretation:

Mean age of oldest allele =
2N∑
j=1

4N

j(j + θ − 1)
generations. (368)

In the case θ = 2 this mean age is very close to 4N − 2, that
is to the conditional mean fixation time (295). The exact result
corresponding to (368) for the Moran model is given in (169), or
equivalently in (166), and is almost exactly 4N2 birth-death events
when θ = 2Nu/(1 − u) = 2. This is close to the conditional mean
fixation time given in (101), and the reason for these identities is
discussed below equation (130).

In employing the argument leading to (368) we in effect use a
result of Watterson and Guess (1977) and Kelly (1977), stating that
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not only the mean age of the oldest allele, but indeed the entire prob-
ability distribution of its age, is independent of its current frequency
and indeed of the frequency of all alleles in the population.

We next ask: “If an allele is observed in the population with fre-
quency p, what is its mean age?” By reversibility, this is the mean
time t̄(p) that it persists in the population, and in the diffusion ap-
proximation to the Wright–Fisher model this is found immediately
from (68) as

4N
∞∑

j=1

{j(j + θ − 1)}−1
(
1− (1− p)j

)
. (369)

This is clearly a generalization of the expression in (73), to which
it reduces when p = 1, since if p = 1 only one allele arises in the
population, and it must then be the oldest allele. A parallel exact
calculation for the Moran model follows from the mean persistence
time found eventually using (105).

A question whose answer follows from the above calculation is
the following: “If a gene is taken at random from the population,
what is the diffusion approximation for the mean age of its allelic
type?” Changing notation, the density function of the frequency
p of the allelic type of the randomly chosen gene is, from (363),
f(p) = θ(1− p)θ−1. The mean age t̄(p) of an allele with frequency p
is, by reversibility, given by (68). The required probability is

θ

∫ 1

0

t̄(p)(1− p)θ−1 dp, (370)

and use of (68) for t̄(p) shows that this reduces to 2/θ diffusion
time units, or for the Wright–Fisher model, 1/u generations. This
conclusion may also be derived by looking backwards to the past
and using the coalescent. However, we shall not derive it this way
since it is an immediately result. Looking backwards to the past, the
probability that the original mutation creating the allelic type of the
gene in question occurred j generations in the past is clearly u(1−
u)j−1, (j = 1, 2, . . .), and the mean of this (geometric) distribution
is 1/u.

An exact calculation parallel to this is possible for the Moran
model, using the exact frequency spectrum (156) and the exact mean
age deriving from (105). However a direct argument parallel to that
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just given for the Wright–Fisher model shows that the exact mean
time, measured in birth-death events, is 2N/u.

We turn now to sample properties, which are in practice more
important than population properties. The most important sample
distribution concerns the frequencies of the alleles in the sample
when ordered by age. This distribution was found by Donnelly and
Tavaré (1986), who showed that the probability that the number
Kn of alleles in the sample takes the value k, and that the age-
ordered numbers of these alleles in the sample are, in age order,
n(1), n(2), . . . , n(k), is

θk(n− 1)!

Sn(θ)n(k)(n(k) + n(k−1)) · · · (n(k) + n(k−1) + · · ·n(2))
, (371)

where Sn(θ) is defined below equation (143). This formula can be
found in several ways, one being as the size-biased version of Equa-
tion (149). The expression (371) is exact for the Moran model with
θ defined as 2Nu/(1− u).

Several results concerning the oldest allele in the sample can be
found from this formula, or in some cases more directly by other
methods. For example, the probability that the oldest allele in the
sample is represented by j genes in the sample is (Kelly, (1976))

θ

n

(
n

j

)(
n+ θ − 1

j

)−1

. (372)

This is identical to the expression (367) if 2N is replaced by n in
the latter.

Further results provide connections between the oldest allele in
the sample to the oldest allele in the population. Some of these re-
sults are exact for a Moran model and others are the corresponding
diffusion approximations. For example, Kelly (1976) showed that in
the Moran model, the probability that the oldest allele in the popu-
lation is observed at all in the sample is n(2N+θ)/[2N(n+θ)]. This
is equal to 1, as it must be, when n = 2N, and for the case n = 1 re-
duces to a result found above that a randomly selected gene is of the
oldest allelic type in the population. The diffusion approximation
to this probability, found by letting N →∞, is n/(n+ θ).

A further result is that in the Moran model, the probability that
a gene seen j times in the sample is of the oldest allelic type in the
population is j(2N + θ)/[2N(n+ θ)]. Letting N →∞, the diffusion
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approximation for this probability is j/(n + θ). When n = j this is
j/(j + θ), a result found above found by other methods.

Donnelly (1986)) provides further formulae extending these. He
showed, for example, that the probability that the oldest allele in
the population is observed j times in the sample is

θ

n+ θ

(
n

j

)(
n+ θ − 1

j

)−1

, j = 0, 1, 2, . . . , n. (373)

This is of course closely connected to the Kelly result (372). For the
case j = 0 this probability is θ/(n+ θ), confirming the complemen-
tary probability n/(n + θ) found above. Conditional on the event
that the oldest allele in the population does appear in the sample, a
straightforward calculation using (373) shows that this conditional
probability and that in (372) are identical.

Griffiths and Tavaré (1998) give the Laplace transform of the
distribution of that age of an allele observed b times in a sample
of n genes, together with a limiting Laplace transform for the case
when θ approaches 0. These results show, for the Wright–Fisher
model, that the diffusion approximation for the mean age of such
an allele is

∞∑
j=1

4N

j(j − 1 + θ)

(
1−

(n− 1− b+ θ − 1)(j)

(n− 1 + θ − 1)(j)

)
(374)

generations, where a(j) is defined as a(j) = a(a + 1) · · · (a + j − 1).
This is the sample analogue of the population expression in (369),
and converges to (369) as n→∞ with b = np.

In the particular case θ = 2, which we have considered several
times above, the expression in (374) simplifies to

4Nb

n− b

n∑
j=b+1

j−1. (375)

Under the limiting process n→∞ with b = np this approaches the
expression in (74). This is as expected, since when θ = 2, (74) is by
reversibility arguments also the mean age of an allele observed with
frequency p in the population.

Our final calculation concerns the mean age of the oldest allele
in the sample. For the Wright–Fisher model the diffusion approxi-
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mation for this mean age is

4N
n∑

j=1

1

j(j + θ − 1)
. (376)

For the case n = 2N this is the value given in (130) and for the case
n = 1 it reduces to the value 1/u given above. The corresponding
exact result for the Moran model is

2N(2N + θ)
n∑

j=1

1

j(j + θ − 1)
(377)

birth-death events, with (of course) θ defined as 2Nu/(1−u). When
n = 1 this reduces to the calculation 2N/u given above. When
n = 2N it is identical to (166) and, less obviously, to the expression
given in (169).

The expression in (376) may be written equivalently as

n∑
j=1

1

vj + wj

, (378)

where

vj =
ju

2N
, wj =

j(j − 1)(1− u)

(2N)2
. (379)

These expressions follow the pattern of (167) and (168).

The coalescent

Introduction

In 1982 John Kingman, inspired by his friend Warren Ewens, took
to heart the advice of Danish philosopher Soren Kierkegaard and re-
alized that “Life can only be understood backwards, but it must be
lived forwards.” Applying this perspective to the world of population
genetics led him to the development of the coalescent, a mathemat-
ical model for the evolution of a sample of individuals drawn from
a larger population. The coalescent has come to play a fundamen-
tal role in our understanding of population genetics and has been at
the heart of a variety of widely-employed analysis methods. For this
it also owes a large debt to Richard Hudson, who arguably wrote
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the first paper about the coalescent that the non-specialist could
easily understand. Here we introduce the coalescent, summarize its
implications, and survey its applications.

The central intuition of the coalescent is driven by parallels with
pedigree-based designs. In those studies, the shared ancestries of
the sample members, as described by the pedigree, are used to in-
form any subsequent analysis, thereby increasing the power of that
analysis. The coalescent takes this a step further by making the
observation that there is no such thing as unrelated individuals. We
are all related to some degree or other. In a pedigree the relation-
ship is made explicit. In a population-based study the relationships
are still present, albeit more distant, but the details of the pedigree
are unknown. However, it remains the case that analyses of such
data are likely to benefit from the presence of a model that describes
those relationships. The coalescent is that model.

Motivating problem

Human evolution and the infinitely- many-sites model

One of the signature early applications of the coalescent was to in-
ference regarding the early history of humans. Several of the earliest
data-sets consisted of short regions of mitochondrial DNA [mtDNA]
or Y chromosome. Since mtDNA is maternally inherited it is per-
fectly described by the original version of the coalescent, with its
reliance upon the existence of a single parent for each individual
and its recombination-free nature. To motivate what follows, here
we consider one of those early data sets.

The data in the following example comes from Ward et. al.
(1991). The data analysis and mathematical modeling comes from
a paper by Griffiths and Tavaré (1994).

Mitochondria DNA ( mtDNA) comprises only about 0.00006% of
the total human genome, but the contribution of mtDNA to our un-
derstanding of human evolution far outweighs its minuscule contri-
bution to our genome. Human mitochondrial DNA, first sequenced
by Anderson et.al. (1981), is a circular double-stranded molecule
about 16,500 base pairs in length, containing genes that code for
13 proteins, 22 tRNA genes and 2 rRNA genes. Mitochondria live
outside the nucleus of cells. One part of the molecule, the control
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region (sometimes referred to as the D-loop), has received particular
attention. The region is about 1,100 base pairs in length.

As the mitochondrial molecule evolves, mutations result in the
substitution of one of the bases A,C,G or T in the DNA sequence
by another one. Transversions, those changes between purines (A,G)
and pyrimidines (C,T), are less frequent than transitions, the changes
that occur between purines or between pyrimidines.

It is known that base substitutions accumulate extremely rapidly
in mitochondrial DNA, occurring at about 10 times the rate of sub-
stitutions in nuclear genes. The control region has an even higher
rate, perhaps on order of magnitude higher again. This high mu-
tation rate makes the control region a useful molecule with which
to study DNA variation over relatively short time spans, because
sequence differences will be found among closely related individu-
als. In addition, mammalian mitochondria are almost exclusively
maternally inherited, which makes these molecules ideal for study-
ing the maternal lineages in which they arise. This simple mode of
inheritance means that recombination is essentially absent, making
inferences about molecular history somewhat simpler than in the
case of nuclear genes.

In this example, we focus on mitochondrial data sampled from a
single North American Indian tribe, the Nuu-Chah-Nulth from Van-
couver Island. Based on the archaeological records (cf. Dewhirst,
1978), it is clear that there is a remarkable cultural continuity from
earliest levels of occupation to the latest. This implies not only that
there was no significant immigration into the area by other groups,
but that subsistence pattern and presumably the demographic size
of the population has also remained roughly constant for at least
8,000 years. Based on the current size of the population that was
sampled, there are approximately 600 women of child bearing age
in the traditional Nuu-Chah-Nulth population.

The original data, appearing in Ward et. al. (1991) comprised
a sample of mt DNA sequences from 63 individuals. The sample
approximated a random sample of individuals in the tribe, to the
extent to which this can be experimentally arranged. Each sequence
is the first 360 basepair segment of the control region. The region
comprises 201 pyrimidine sites and 159 purine sites; 21 of the pyrim-
idine sites are variable (or segregating), that is, not identical in all
63 sequences in the sample. In contrast, only if 5 of the purine sites
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Table 7: North American Indian tribe from Vancouver Island. The data consist
of 55 individuals 352 sites. There are 18 segregating sites in all; 13 of the sites
are pyrimidines, and 5 purines.

are variable. There are 28 distinct DNA sequences (hereafter called
lineages) in the data. Because, no transversions are seen in these
data each DNA site is binary, having just two possible bases at each
site.

To keep the presentation simple, we focus on one part of the data
that seems to have a relatively simple mutation structure. We shall
assume that substitutions at any nucleotide position can occur only
once in the ancestry of the molecule. This is called the infinitely-
many-sites assumption. Hence we have eliminated lineages in
which substitutions are observed to have occurred more than once.
The resulting subsample comprises 55 of the original 63 sequences,
and 352 of the original 360 sites. Eight of the pyrimidine segre-
gating sites were removed resulting in a set of 18 segregating sites
in all; 13 of these sites are pyrimidines, and 5 are purines. These
data are given in Table 7, subdivided into sites containing purines
and pyrimidines. Each row of the table represents a distinct DNA
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sequence, and the frequency of these lineages are given in the right
most column of the table.

What structure do these sites have? Because of the infinitely-
many-sites assumption, the pattern of segregating sites tells us some-
thing about the mutations that have occurred in the history of the
sample. Next we consider an ancestral process that could have given
rise the observed pattern of variability. This is called the coalescent.

The coalescent process, which we will discuss in some detail as
the course goes on, is a way to describe the ancestry of the sample.
The coalescent has a very simple structure. Ancestral lines going
backward in time coalesce when they have a common ancestor. Co-
alescence occur only between pairs of individuals. This process may
also be thought of as generating a binary tree, with the leaves repre-
senting the sample sequences and the vertices where ancestral lines
coalesce. The root of the tree is the most recent common ancestor
(MRCA) of the sample.

Example 1 To get an idea for building trees from sequences we
begin with a simple example. Consider just the segregating purines
of lineage b, c, d, e from Table 7. Below is this reduced data set.

Site 1 2 3 4
lineage
b A G G A
c G A G G
d G G A G
e G G G A

Suppose G G G G is the ancestral sequence to the four lineages.
Figure 1 represents one possible evolutionary scenario connecting
the individuals in the sample. The • represents a mutation. The
number next to the • represents the position of the mutation. We
read the tree diagram in Figure 1 as follows. Start at the ancestral
tip of the tree. The first event to occur is a split in the ancestral
line. Next a mutation occurs and a G mutates to an A at position
4. This mutation is passed on to lineage b and e. The tree splits
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Figure 1: A tree consistent with the data in Example 1

again and a mutation occurs at site 2 in lineage c. Next, a mutation
occurs at site 3 in lineage d. The final split in the tree separates
lineage b and e. The last evolutionary event is a mutation at site 1
in lineage b.

A coalescent tree consistent with the data in Table 7 is given
below

A rooted and unrooted gene tree consistent with the data in Table
7 is given below

Exercise 1 Convince yourself that Figure 2. represents a coalescent
tree that is consistent with the data given in Table 7. Use the most
frequently occurring basepair at each site as the ancestral sequence.
Describe each event that lead to the sample. Construct another
coalescent tree that is consistent with the data.

Exercise 2 Since mutations can occur only once in a given site,
there is an ancestral type and a mutant type at each segregating
site. For the moment assume we know which is which, and label
the ancestral type is 0 and the mutant type as 1. To fix ideas, take
each column of the data in Table 7 and label the most commonly
occurring base as 0, the other as 1. Construct a matrix of 0’s and
1’s for the data in Table 7 in the manner described above.

The matrix of 0’s and 1’s can be represented by a rooted tree
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Figure 2: A tree consistent with the data in Table 7

by labelling each distinct row by a sequence of mutations up to the
common ancestor. These mutations are the vertices in the tree. This
rooted tree is a condensed description of the coalescent tree with its
mutations, and it has no time scale in it. Figure 3 represents a
rooted condensed tree consistent with the data in table 1.

Exercise 3 Verify that Figure 3 is consistent with the data. Take
lineages a, b, c, d, j and draw the rooted condensed tree for this sub-
set of individuals.

Of course, in practice we never know which type at a site is an-
cestral. All that can be deduced then from the data are the number
of segregating sites between each pair of sequences. In this case
the data is equivalent to an unrooted tree whose vertices represent
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Figure 3: Rooted gene tree Figure 3a (top), Unrooted tree Figure 3b (bottom)

distinct lineages and whose edges are labeled by mutations between
lineages. The unrooted tree corresponding to the rooted tree in Fig-
ure 3a is shown in Figure 3b. All possible rooted trees may be found
from an unrooted tree by placing the root at a vertex or between
mutations, then reading off mutation paths between lineages and
the root.

Exercise 4 Construct three rooted trees consistent with the un-
rooted tree in Figure 3b.

We will return to this example later in the course. At that time
we will address the problem of estimating the mutation rate, and
predicting the time back to the most recent common ancestor. The
example illustrates how to connect DNA sequence data to the an-
cestry of the individuals in the population.
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Two technical results

It is convenient to start with two technical results, one of which will
be relevant for approximations in the coalescent associated with the
Wright-Fisher model, and by implication the Cannings model, while
the other will be relevant for exact Moran model calculations.

We consider first a Poisson process in which events occur inde-
pendently and randomly in time, with the probability of an event in
(t, t+ δt) being aδt. (Here and throughout we ignore terms of order
(δt)2.) We call a the rate of the process. Standard Poisson process
theory shows that the density function of the (random) time X be-
tween events, and until the first event, is f(x) = a e−ax, and thus
that the mean time until the first event, and also between events, is
1/a.

Consider now two such processes, process (a) and process (b),
with respective rates a and b. From standard Poisson process theory,
given that an event occurs, the probability that it arises in process
(a) is a/(a+ b). The mean number of “process (a)” events to occur
before the first “process (b)” event occurs is a/b. More generally,
the probability that j “process (a)” events occur before the first
“process (b)” event occurs is

b

a+ b

( a

a+ b

)j

, j = 0, 1, . . . . (380)

The mean time for the first event to occur under one or the other
process is 1/(a+ b). Given that this first event occurs in process (a),
the conditional mean time until this first event occurs is equal to
the unconditional mean time, namely 1/(a+b). The same conclusion
applies if the first event occurs in process (b).

Similar properties hold for the geometric distribution. Consider a
sequence of independent trials and two events, event A and event B.
The probability that one of the events A and B occurs at any trial
is a + b. The events A and B cannot both occur at the same trial,
and given that one of these events occurs at trial i, the probability
that it is an A event is a/(a+ b).

Consider now the random number of trials until the first event
occurs. This random variable has geometric distribution, and takes
the value i, i = 1, 2, . . . , with probability (1− a− b)i−1(a+ b). The
mean of this random variable is thus 1/(a+ b). The probability that
the first event to occur is an A event is a/(a + b). Given that the
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first event to occur is an A event, the mean number of trials before
the event occurs is 1/(a + b). In other words, this mean number of
trials applies whichever event occurs first. The similarity of proper-
ties between the Poisson process and the geometric distribution is
evident.

Approximate results for the Wright-Fisher model - no mu-
tation

With the above results in hand, we first describe the general concept
of the coalescent process. To do this, we consider the ancestry of a
sample of n genes taken at the present time. Since our interest is in
the ancestry of these genes, we consider a process moving backward
in time, and introduce a notation acknowledging this. We consis-
tently use the notation τ for a time in the past before the sample
was taken, so that if τ2 > τ1, then τ2 is further back in the past than
is τ1.

We describe the common ancestry of the sample of n genes at
any time τ through the concept of an equivalence class. Two genes
in the sample of n are in the same equivalence class at time τ if
they have a common ancestor at this time. Equivalence classes are
denoted by parentheses: Thus if n = 8 and at time τ genes 1 and 2
have one common ancestor, genes 4 and 5 a second, and genes 6 and
7 a third, and none of the three common ancestors are identical, the
equivalence classes at time time τ are

(1, 2), (3), (4, 5), (6, 7), (8). (381)

Such a time τ is shown in Figure 4.
We call any such set of equivalence classes an equivalence relation,

and denote any such equivalence relation by a Greek letter. As two
particular cases, at time τ = 0 the equivalence relation is φ1 =
{(1), (2), (3), (4), (5), (6), (7), (8)}, and at the time of the most recent
common ancestor of all eight genes, the equivalence relation is φn =
{(1, 2, 3, 4, 5, 6, 7, 8)}. The coalescent process is a description of the
details of the ancestry of the n genes moving from φ1 to φn.

Let ξ be some equivalence relation, and η some equivalence rela-
tions that can be found from ξ by amalgamating two of the equiv-
alence classes in ξ. Such an amalgamation is called a coalescence,
and the process of successive such amalgamations is called the co-
alescence process. It is assumed that, if terms of order (δτ)2 are
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Figure 4: The coalescent

ignored, and given that the process is in ξ at time τ ,

Prob (process in η at time τ + δτ) = δτ, (382)

and if j is the number of equivalence classes in ξ,

Prob (process in ξ at time τ + δτ) = 1− j(j − 1)

2
δτ. (383)

The above assumptions are clearly approximations for any discrete-
time process, but they are precisely the assumptions needed for the
Wright-Fisher approximate coalescent theory.

The coalescent process defined by (382) and (383)consists of a
sequence of n − 1 Poisson processes, with respective rates j(j −
1)/2, j = n, n − 1, . . . , 2, describing the Poisson process rate at
which two of these classes amalgamate when there are j equivalence
classes in the coalescent. Thus the rate j(j − 1)/2 applies when
there are j ancestors of the genes in the sample for j < n, with the
rate n(n− 1)/2 applying for the actual sample itself.

The Poisson process theory outlined above shows that the time
Tj to move from an ancestry consisting of j genes to one consisting of
j− 1 genes has an exponential distribution with mean 2/{j(j− 1)}.
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Since the total time required to go back from the contemporary
sample of genes to their most recent common ancestor is the sum
of the times required to go from j to j − 1 ancestor genes, j =
2, 3, . . . , n, the mean E(TMRCAS) is, immediately,

TMRCAS = Tn + Tn−1 + · · ·+ T2 (384)

It follows that

E(TMRCAS) =
n∑

k=2

E(Tk)

=
n∑

k=2

2

k(k − 2)

= 2
n∑

k=2

(
1

k − 1
− 1

k

)

= 2

(
1− 1

n

)

(385)

Therefore
1 = E(T2) ≤ E(TMRCAS) < 2

Note that TMRCAS is close to 2 even for moderate n.

Example 2 Again consider a sample of n = 30 Nuu-Chah females
in a population of N = 600. The mean time to a common ancestor

of the sample is 2(1 − 1

30
) = 1.933 (1160 generations) and the

mean time to a common ancestor of the population is 2(1− 1

600
) =

1.997 (1198 generations). The mean difference between the time
for a sample of size 30 to reach a MRCA, and the time for the
whole population to reach its MRCA is 0.063, which is about 38
generations.

Warning The above calculations are not based on any of the base-
pair sequence information in the Nuu-Chah data set. They can only
be viewed as crude guesses as to what one might expect from an
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unstructured randomly mating population. We will see later that
our predictions can be refined once we fit the data to the model.

Note that T2 makes a substantial contribution to the sum in (385)
for TMRCAS. For example, on average for over half the time since
its MRCA, the sample will have exactly two ancestors.

Further, using independence of the Tk,

Var(TMRCAS) =
n∑

k=2

Var(Tk)

=
n∑

k=2

(
2

k(k − 1)

)2

= 8
n−1∑
k=1

1

k2
− 4

(
1− 1

n

)(
3 +

1

n

)
.

It follows that

1 = Var(T2) ≤ Var(TMRCAS) ≤ lim
n→∞

Var(TMRCAS) = 8
π2

6
−12 ≈ 1.16.

Exercise 5 Calculate the mean and standard deviation of the time
to the MRCA of a population of N = 600. Express your answer in
units of generations.

Lineage Sorting–an application in phylogenetics

Now focus on two particular individuals in the sample and observe
that if these two individuals do not have a common ancestor at t,
the whole sample cannot have a common ancestor. Since the two
individuals are themselves a random sample of size two from the
population, we see that

P (TMRCAS > t) ≥ P (T2 > t) = e−t,

it can be shown that

P (TMRCAS > t) ≤ 3(n− 1)

n+ 1
e−t (386)



151

and so

e−t ≤ P (TMRCAS > t) ≤ 3e−t (387)

The coalescent provides information on the history of genes within
a population or species; by contrast, phylogenetic analysis studies
the relationship between species. Central to a phylogenetic analy-
sis of molecular data is the assumption that all individuals within
a species have coalesced to a common ancestor at a more recent
time point than the time of speciation, see Figure 5 for an illus-
tration. If this assumption is met then it does not matter which
homologous DNA sequence region is analyzed to infer the ancestral
relationship between species. The true phylogeny should be con-
sistently preserved regardless of the genetic locus used to infer the
ancestry. If there is a discrepancy between the inferred phylogeny at
one locus versus another then that discrepancy can be explained by
the stochastic nature of statistical inference. However, the within
species ancestry and the between species ancestry are not always on
different time scales and completely separable. It is possible that a
particular homologous region of DNA used to produce a phylogeny
between species could produce a different phylogeny than a different
homologous region and the difference is real (see Figure 6). One ex-
planation of this phenomena is called lineage sorting and it occurs
when the time to speciation is more recent than the time to the
most recent common ancestry of the gene. This makes it appear
like two sub-populations from the same species are more distantly
related than two distinct species.

However, the coalescent model can actually help determine if
lineage sorting is plausible. For example, if based on external ev-
idence, (possibly fossil evidence) the time to speciation is at least
u generations into the past, then it is reasonable to ask, how likely
is it that a population has not reached a common ancestor by time
u. Converting from generations to coalescent the time scale, define
t = u/2Ne. If TMRCAS is the time it takes a population to reach
a common ancestor, then we can use equation (387) to determine
if lineage sorting is a reasonable explanation. If 3e−t is small, then
coalescent time scale and the phylogenetic time scales are likely to
be different and lineage sorting is likely not to be the appropriate
explanation. Thus another implication of coalescent theory is that
the it provides appropriate insight as to how distantly related genes
are within a species, which can help resolve issues in phylogenetic
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analysis.

Figure 5: Population coalescence does not predate speciation

Figure 6: Population coalescence predates speciation

Approximate results for the Wright-Fisher model with mu-
tation

We now introduce mutation, and suppose that the probability that
any gene mutates in the time interval (τ + δτ, τ) is (θ/2)δτ. All
mutants are assumed to be of new allelic types. Following the coa-
lescent paradigm, we trace back the ancestry of a sample of n genes
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to the mutation forming the oldest allele in the sample. As we go
backward in time along the coalescent, we shall encounter from time
to time a “defining event”, taken either as a coalescence of two lines
of ascent into a common ancestor or a mutation in one or other of
the lines of ascent. Figure 7 describes such an ancestry, identical to
that of Figure 4 but with crosses to indicate mutations.
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Figure 7: The coalescent with mutations

We exclude from further tracing back any line in which a muta-
tion occurs, since any mutation occurring further back in any such
line does not appear in the sample. Thus any such line may be
thought of as stopping at the mutation, as shown in Figure 8 (de-
scribing the same ancestry as that in Figure 7).

If at time τ there are j ancestors of the n genes in the sample,
the probability that a defining event occurs in (τ, τ + δτ) is

1

2
j(j − 1)δτ +

1

2
jθδτ =

1

2
j(j + θ − 1)δτ, (388)

the first term on the left-hand side arising from the possibility of a
coalescence of two lines of ascent, and the second from the possibility
of a mutation.

If a defining event is a coalescence of two lines of ascent, the
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Figure 8: Tracing back to, and stopping at, mutational events

number of lines of ascent clearly decreases by 1. The fact that
if a defining event arises from a mutation we exclude any further
tracing back of the line of ascent in which the mutation arose implies
that the number of lines of ascent also decreases by 1. Thus at
any defining event the number of lines of ascent considered in the
tracing back process decreases by 1. Given a defining event leading
to j genes in the ancestry, the Poisson process theory described
above shows that, going backward in time, the mean time until the
next defining event occurs is 2/{j(j + θ − 1)}, and that the same
mean time applies when we restrict attention to those defining events
determined by a mutation.

Thus starting with the original sample and continuing up the
ancestry until the mutation forming the oldest allele in the sample
is reached, we find that the mean age of the oldest allele in the
sample is

2
n∑

j=1

1

j(j + θ − 1)
(389)

coalescent time units. The value in (389) must be multiplied by 2N
to give this mean age in terms of generations.
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The time backward until the mutation forming the oldest allele in
the sample, whose mean is given in (389), does not necessarily trace
back to, and past, the most recent common ancestor of the genes
in the sample (MRCAS), and will do so only if the allelic type of
the MRCAS is represented in the sample. This observation can be
put in quantitative terms by comparing the MRCAS given in (385)
to the expression in (389). For small θ, the age of the oldest allele
will tend to exceed the time back to the MRCAS, while for large
θ, the converse will tend to be the case. The case θ = 2 appears
to be a borderline one: For this value, the expressions in (385) and
(389) differ only by a term of order n−2. Thus for this value of θ,
we expect the oldest allele in the sample to have arisen at about the
same time as the MRCAS.

The competing Poisson process theory outlined above shows that,
given that a defining event occurs with j genes present in the an-
cestry, the probability that this is a mutation is θ/(j − 1 + θ). Thus
the mean number of different allelic types found in the sample is

n∑
j=1

θ

j − 1 + θ
,

and this is the value given in (146). The number of “mutation-
caused” defining events with j genes present in the ancestry is, of
course, either 0 or 1, and thus the variance of the number of different
allelic types found in the sample is

n∑
j=1

(
θ

j − 1 + θ
− θ2

(j − 1 + θ)2

)
.

This expression is easily shown to be identical to the variance for-
mula (147).

Even more than this can be said. The probability that exactly k
of the defining events are “mutation-caused” is clearly proportional
to θk/{θ(θ + 1) · · · (θ + n − 1)}, the proportionality factor not de-
pending on θ. Since this is true for all possible values of θ and since
the sum of the probabilities over k = 1, 2, . . . , n must be 1, the prob-
ability distribution of the number of different alleles in the sample
must be given by (145).

The complete distribution of the allelic configuration in the sam-
ple as given in (143) is not so simply derived. Kingman (1982), to
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whom coalescent theory is due, employed the full machinery of the
coalescent process, together with a combinatorial argument consid-
ering all possible paths from φn to φ1, to derive (143). That is,
(143) derives immediately from, and is best thought of as a conse-
quence of, the coalescent properties of the ancestry of the genes in
the sample.

The sample contains only one allele if no mutants occurred in the
coalescent after the original mutation for the oldest allele. Moving
up the coalescent, this is the probability that all defining events
before this original mutation is reached are amalgamations of lines
of ascent rather than mutations. The probability of this is

n−1∏
j=1

j

(j + θ)
=

(n− 1)!

(1 + θ)(2 + θ) · · · (n− 1 + θ)
, (390)

and this agrees, as it must, with the expression in (148).

The length of a coalescent tree is defined to be the sum of all of
its branch lengths and is denoted by Ln which can be determined
from the coalescent times as follows

Ln =
n∑

j=2

jTj,

where the random variable Tj are independent and have exponential
distribution with rate parameter j(j − 1)/2. If Sn denotes the total
number of mutations on the genealogical tree back to the MRCA
of a sample of size n, then conditional on Ln, Sn has a Poisson
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distribution with mean θLn/2. It follows that

E(Sn) = E(E(Sn|Ln))

= E(θLn/2)

=
θ

2
E(

n∑
i=2

iTi)

=
θ

2

n∑
i=2

iE(Ti)

=
θ

2

n∑
i=2

i
2

i(i− 1)

= θ
n−1∑
j=1

1

j

(391)

Notice that for large n then E(Sn) ∼ θ log n.

Example 3 We calculate the mean number of mutations for various
sample sizes, when θ = 4,

Sample θ E(Sn)
size n

10 4 9.21
20 4 11.98
40 4 14.76
45 4 15.23
50 4 15.65
60 4 16.38
100 4 18.42

Recall that E(Sn) is the average number of mutations accumu-
lated by a sample of size n under the neutral coalescent model. Any
given realization of evolution will produce an Sn that varies around
the expected value. The standard deviation of Sn tells you how
much variation to expect. The formula for standard deviation is
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STDEV(Sn) =
√

Var(Sn). We will now calculate Var(Sn). Because
Sn arises as a result of two random processes, we need to account
for both processes in our calculation of the variance of Sn. Below is
the formula that is needed to calculate Var(Sn).

Var(Sn) = E(Var(Sn|Ln)) + Var(E(Sn|Ln)). (392)

One way to interpret Equation (392) is as follows. There are
two sources of variation. One is due to fluctuations inherent in the
coalescent process and the other is due to the fluctuations inherent
in the Poisson mutation process. The term E(Var(Sn|Ln)) can be
thought as the contribution of the variance of Sn attributed to the
Poisson mutation process. Var(E(Sn|Ln)) may be though of as the
amount variation due to the coalescent process. Therefore,

Var(Sn) = E(Var(Sn|Ln)) + Var(E(Sn|Ln))

= E

(
θ

2
Ln

)
+ Var

(
θ

2
Ln

)

=
θ

2
E(Ln) +

θ2

4
Var(Ln)

= θ
n−1∑
i=1

1

i
+
θ2

4
Var

(
n∑

i=2

iTi

)

= θ
n−1∑
i=1

1

i
+
θ2

4

n∑
i=2

i2Var (Ti)

= θ
n−1∑
i=1

1

i
+
θ2

4

n∑
i=2

i2
4

i2(i− 1)2

= θ
n−1∑
i=1

1

i
+ θ2

n−1∑
i=1

1

i2

For large n then

Var(Sn) = θ log n+ 2θ2
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Below is a table means and standard deviations

n θ E(Sn) Stdev(Sn)
10 4 9.21 6.00
20 4 11.98 6.10
40 4 14.76 6.20
45 4 15.23 6.21
50 4 15.65 6.23
60 4 16.38 6.25
100 4 18.42 6.32

Exact results for the Moran model - no mutation

We now turn to exact coalescent results for the Moran model. These
are found in a manner similar to that used above, with the time unit
used corresponding to the time between one birth and death event
and the next.

As we did for the Wright–Fisher model, we first consider the
coalescent process itself. Here, however, we use a coalescent theory
that is not only exact, but that also applies for a sample of any
size, and in particular to the entire population of genes itself. This
implies that all results deriving from coalescent theory, for example
the topology of the coalescent tree, are identical to corresponding
results for the exact Moran model coalescent process.

It is convenient to think of a gene that does not die in a birth and
death event as being its own descendant after that event has take
place. Consider, then, a sample of n genes, where n is not restricted
to be small and could be any number up to and including the entire
population size of 2N. As we trace back the ancestry of these n genes
we will encounter a sequence of coalescent events reducing the size of
the ancestry to n−1, n−2, . . . genes and eventually to one gene, the
most recent common ancestor of the sample. Suppose that in this
process we have just reached a time when there are exactly j genes
in this ancestry. These will be “descendants” of j−1 parental genes
if one of these parents was chosen to reproduce and the offspring is in
the ancestry of the sample of n genes. The probability of this event
is j(j−1)/(2N)2. With probability 1−j(j−1)/(2N)2 the number of
ancestors remains at j. It follows that, as we trace back the ancestry
of the genes, the number Tj of birth and death events between the
times when there are j ancestor genes and j− 1 ancestor genes has,
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exactly, a geometric distribution with parameter j(j−1)/(2N)2 and
thus with mean (2N)2/{j(j − 1)}. From this, the mean of the time
TMRCAS until the most recent common ancestor of all the genes in
the sample is given by

E(TMRCAS) =
n∑

j=2

(2N)2

j(j − 1)
= (2N)2

(
1− 1

n

)
(393)

birth and death events. In the particular case n = 2N this is

E(TMRCAP) = 2N(2N − 1) (394)

birth and death events.
Since the various Tj’s are independent, the variance of TMRCAP is

the sum of the variances of the Tj’s. This is

var(TMRCAS) =
n∑

j=2

(2N)4

j2(j − 1)2
−

n∑
j=2

(2N)2

j(j − 1)
. (395)

The complete distribution of TMRCAP can be found, but the resulting
expression is complicated and is not given here.

Exact results for the Moran model with mutation

We now introduce mutation. Consider again a sample of n genes and
the sequence of birth and death events that led to the formation of
this sample. We again trace back the ancestry of the n genes in the
sample, and consider some birth and death event when this ancestry
contains j−1 genes. With probability j/2N the newborn created in
the population at this birth and death event is in the ancestry of the
sample, and with probability u is a mutant. That is, the probability
that at this birth and death event a new mutant gene is added to the
ancestry of the sample is ju/(2N). As for the Wright–Fisher model,
we trace back upward along the lines of ascent from the sample, and
do not trace back any further any line of ascent at a time when a
new mutant arises in that line, so that at any mutation, the number
of lines of ascent that we consider decreases by 1.

A further decrease can occur from a coalescence for which the
addition of a newborn to the ancestry of the sample does not produce
a mutant offspring gene. If at any time there are j lines in the
ancestry, the probability of a coalescence not arising from a mutant
newborn is j(j − 1)(1− u)/(2N)2.
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It follows from the above that the number of lines of ascent from
the sample will decrease from j to j − 1 at some birth and death
event with total probability

ju

2N
+

j(j − 1)(1− u)

(2N)2
=

2Nju+ j(j − 1)(1− u)

(2N)2
. (396)

We write the left-hand side as vj +wj, where vj and wj are defined
in (168). The number of birth and death events until a decrease in
the number of lines of ascent from j to j − 1 follows a geometric
distribution with parameter vj + wj. It follows from the competing
geometric theory given above that the mean number of birth and
death events until the number of lines of ascent decreases from j to
j− 1 is 1/(vj +wj), and that this mean applies whatever the reason
for the decrease. Tracing back to the mutation forming the oldest
allele in the sample, we see that the mean age of this oldest allele
is, exactly,

n∑
j=1

1

vj + wj

, (397)

where vj and wj are defined in (168).
The probability that a decrease in the number of ancestral lines

from j to j−1, given that such a decrease occurs, is vj/(vj +wj), or,
using the Moran model definition of θ, more simply as θ/(j−1+ θ).
The mean number of different alleles in the sample is thus, exactly,

n∑
j=1

θ

j − 1 + θ
, (398)

as given by (146). Extending this argument as for the Wright–Fisher
case, the exact distribution of the number of alleles in the sample is
found to be given by (145), as expected.

The complete distribution of the sample allelic configuration, as
with the Wright–Fisher model, requires a full description of the co-
alescent process.

The argument just used, while expressed as one concerning a
sample of genes, applies equally for the entire population of genes.
This occurs because, even in the entire population, at most one coa-
lescent event can occur at each birth and death event. Thus all the
exact sample Moran model results found by coalescent arguments
apply for the population as a whole, with n being replaced by 2N.
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This explains the identity of the form of many exact Moran model
sample and population formulas.

Estimating the parameter θ

We have been investigating the properties of the neutral coalescent.
We have been focusing our efforts on answering the following ques-
tion: if the neutral model for evolution with constant mutation rate
is a reasonable model, what can we expect the ancestry of a sample
to look like? We found that under neutrality coalescence occur at
the rate of n(n− 1)/2 where n is the sample size. This means that
on average, coalescence occur quickly in the recent past and then
very slowly in the more distant past, as the number of ancestors
becomes small. In fact, on average, half the time back to MRCA is
T2 the time for last two ancestors to coalesce. We found that the
average number of mutations back to the MRCA is proportional to
the mutation parameter θ and inversely proportional to log n.

Of course, averages tell only part of the story. There is a fair
amount of variation about the average. To get a handle on the vari-
ation, we calculated the variance and standard deviation for Tn, the
time back to the MRCA, and the variance and standard deviation
of Sn, the number of mutations back to the MRCA of a sample of
size n.

We now want to shift the focus from mathematical modelling to
statistical inference. Rather than ask, ‘for a given mutation param-
eter, θ, what can we say about the ancestry of the sample, we now
ask the more relevant question, for a given sample, what can we say
about the population. In particular, what is our best estimate for θ
based on information in a sample.

Watterson’s estimator

Under the assumptions of the infinite sites model, the number of
segregating sites is exactly the total number of mutations Sn since
the MRCA of the sample. Recall that

E(Sn) = anθ (399)
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where an =
n−1∑
i=1

1

i
and

Var(Sn) = anθ + bnθ
2 (400)

where bn =
n−1∑
i=1

1

i2
.

Define

θ̂S =
Sn

an

.

This is called the segregating sites estimator for θ and goes back to
a paper by Watterson (1975). Note that it follows from (399) that

E(θ̂S) = θ. Estimators of this type are called unbiased. It follows
from (400) that

Var(θ̂S) =
1

an

θ +
bn
a2

n

θ2 (401)

It is easy to see that Var(θ̂S) → 0 as n→∞. Estimators with this
property are said to be consistent. This means that one can attain
any level of precision desired by choosing the sample size sufficiently
large. However, don’t expect the precision to be much better than
half the size of the estimate, unless you require ridiculously large
sample sizes.

Example 4 If it is known that θ is no bigger than 6, using the
segregating sites estimator for θ, how large a sample is required to
insure that the error of the estimate is less than or equal to 1?
Soln. Lets assume that the error of an estimate is 2 standard de-
viations. If 2 standard deviations is 1 unit, then we want to choose
a sample size so that the standard deviation of the estimate for θ is
less than or equal to .5. Using a conservative initial guess for θ to
be 6 we have

.5 =

√
6

an

+
36bn
a2

n

We wish to solve for n in the above equation. To simplify matters
lets replace bn with its upper bound of 2. Therefore

.25 =
6

an

+
72

a2
n

.25a2
n = 6an + 72
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Solving the above quadratic equation gives an ≈ 32, implying n ≈
1.73 × 1014. However, if you require a standard deviation for the
estimate to be 2, then the sample size required for this level of
precision is just n = 158.

The expressions in (334) shows that θ does not admit unbiased
estimation using infinitely many alleles data. By contrast, it is clear
from the above that θ admits unbiased estimation in the infinitely
many sites case, using estimators based on Sn. This makes it all the
more remarkable that, whereas the infinitely many alleles quantity
Kn is a sufficient statistic for θ in that model, Sn is not a sufficient
statistic for θ in the infinitely many sites model. This implies that
in the infinitely many sites model, the data in a sample of genes
beyond that given by Sn can in principle be used to provide better
estimation of θ than than provided through Sn.

Note that the variance (401) is of order 1/ log n and is thus quite
large even for large n. The same is true of the variance of the esti-
mator (338). This implies that neither Kn nor Sn provides reliable
estimation of θ. A variance of order 1/ log n, rather than the classic
statistical order 1/n, arises in both cases because of the dependence
between the genes in the sample arising from their common ancestry.

Finally we can compare the variance (401) of θ̂S with the approxi-

mate infinitely many alleles mean square error (MSE) of θ̂K , given in

(338). This comparison shows that the variance of θ̂S is sometimes

less than, and sometimes more than, the approximating MSE of θ̂K

given in (338). For small θ the two expressions are, as we expect,

quite close. For θ ≤ 1 the variance of θ̂S is always less than the
approximating MSE of θ̂K , being about 94% of the approximating
MSE when θ = 1, n = 100. Further, the variance of θ̂S is always
less than the approximating MSE when n ≤ 50, but for n = 51 it
is possible to find values of θ for which the reverse is true. When
θ = 5, n = 500, the variance of θ̂S is about 18% larger than the
approximating MSE of θ̂K .

It is in principle possible to employ more detailed “sites” data
to find a better estimator of θ than that provided by using only
Sn, which ignores aspects of these more detailed data. This matter
has been discussed at length in the literature. Optimal estimation
in statistics arises through the method of maximum likelihood, and
thus the aim is to find the likelihood of a sample of n genes, the data
in this sample involving not only the value of Sn but the complete
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configuration of the nucleotides at the various segregating sites.

Pairwise differences

Recall that θ is the expected number of mutations separating two
individuals. So a natural way to estimate θ is to calculate number of
mutations separating individuals two at a time and average over all
pairs. This may be thought of as a sample average used to estimate
a population average. To calculate this we take individuals two at
a time. Denote by

Sij = Number of mutations separating individuals i and j.

Under the infinite sites assumption, we can calculate Sij from
a sample by calculating the number of segregating sites between
sequences i and j. If we average Sij over all pairs (i, j), this is called
the average number of pairwise differences. We denote the average
number of pairwise differences by.

Dn =
2

n(n− 1)

∑
i≤j

Sij.

Note that we can think of individuals (i, j) as sample of size 2,
therefore

E(Sij) = E(S2) = θ.

Therefore,

E(Dn) =
2

n(n− 1)

∑
i≤j

E (Sij) = θ

Thus, Dn is an unbiased estimator. Tajima (1981) was the first to

investigate the properties of Dn. We will refer to θ̂T = Dn. It is
interesting to note that θ̂T has very poor statistical properties. In
fact, θ̂T has higher variance than any of the other estimators we will
consider. Why does an estimator that seems so natural have such
poor properties? The answer lies in the fact that their is dependence
in the data generated by the common ancestral history. This means
that Sij and Skl are positively correlated random variables. As a
result the precision of the estimator Dn will be low.

In fact,

Var(Dn) =
n+ 1

3(n− 1)
θ +

2(n2 + n+ 3)

9n(n− 1)
θ2 (402)
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The details for deriving Var(Dn) are left as an exercise (se below)
Note that

lim
n→∞

Var(Dn) =
θ

3
+

2

9
θ2.

The pairwise difference estimate is not consistent. The square root
of the above limit represents the optimal precision one can obtain,
regardless of sample size, using the pairwise difference estimator.
Exercise 6

1. Show that

E(D2
n) =

1

n2(n− 1)2

[
2n(n− 1)E(S2

12) + 4n(n− 1)(n− 2)E(S12S13)

+n(n− 1)(n− 2)(n− 3)E(S12S34)] .

2. Show that E(S2
12) = 2θ2 + θ.

3. It can be shown that

E(S12S13) =
4θ2

3
+
θ

2
,

and

E(S12S34) =
11θ2

9
+
θ

3
.

Use these results to calculate E(D2
n)

4. Show that

Var(Dn) =
n+ 1

3(n− 1)
θ +

2(n2 + n+ 3)

9n(n− 1)
θ2

Likelihood and Efficiency

In the last section we considered two estimators for θ that were based
on summary statistics. Noticed that the segregating sites method
performed better than the pairwise difference method. However,
both estimators tend to have fairly high variance. The theory of
mathematical statistics provides us with a lower bound on the vari-
ance of all unbiased estimators. This lower bound is called the
Cramèr-Rao lower bound. Efficiency of an estimator is defined to
be the variance of an estimator relative to the minimum variance
possible. In this section we begin with some general results from
mathematical statistics. In particular we establish the Cramèr-Rao
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lower bound. We then calculate this lower bound in the context of
the neutral coalescent model.

General Set up Let X1, X2, · · · , Xn be a sample of size n with

P (X1 = x1, X2 = x2, . . . , Xn = xn) = f(x1, x2, . . . , xn; θ).

We wish to estimate the parameter θ. An estimate of θ is a function
of the data. Let θ̂ ≡ θ̂(X1, X2, . . . , Xn) be an estimator of θ. An
unbiased estimator has the property that

E(θ̂) = θ.

Result 1

E

(
∂

∂θ
log f(X1, X2, . . . , Xn; θ)

)
= 0

Proof.
Define

u(x1, x2, . . . , xn; θ) =
∂

∂θ
log f(x1, x2, . . . , xn; θ)

which can also be written as

u(x1, x2, . . . , xn; θ) =
1

f(x1, x2, . . . , xn; θ)

∂

∂θ
f(x1, x2, . . . , xn; θ).

If we define a random variable U = u(X1, X2, . . . , Xn; θ) then

E(U) =
∑

u(x1, x2, . . . , xn; θ)f(x1, x2, . . . , xn)

=
∑ ∂

∂θ
f(x1, x2, . . . , xn; θ)

=
∂

∂θ

∑
f(x1, x2, . . . , xn; θ)

=
∂

∂θ
1

= 0
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Result 2

Var

(
∂

∂θ
log f(X1, X2, . . . , Xn; θ)

)
= −E

(
∂2

∂θ2
log f(X1, X2, . . . , Xn; θ)

)
The proof is left as an exercise

Cramèr-Rao Lower Bound. If θ̂ is an unbiased estimator of θ
then

Var(θ̂) ≥ 1

−E
(
∂2

∂θ2
log f(X1, X2, . . . , Xn; θ)

)
Proof. Note that

θ = E(θ̂) =
∑

θ̂(x1, x2, . . . , xn)f(x1, . . . , xn; θ)

Differentiating the above equation with respect to θ gives

1 =
∑

θ̂(x1, x2, . . . , xn)
∂

∂θ
f(x1, . . . , xn; θ)

=
∑

θ̂(x1, x2, . . . , xn)u(x1, x2, . . . , xn; θ)f(x1, . . . , xn; θ)

= E(Uθ̂)

= Cov(U, θ̂)

The last line follows from the fact that Cov (U, θ̂) = E(Uθ̂) −
E(U)E(θ̂). Recall from Result 1 that E(U) = 0.

Because the correlation coefficient is always between ±1, it fol-
lows that

Var(θ̂)Var(U) ≥ [Cov(U, θ̂)]2.

Therefore
Var(θ̂)Var(U) ≥ 1

implying

Var(θ̂) ≥ 1

Var(U)
.

It follows from Result 2 that Var(U) = −E
(
∂2

∂θ2
log f(X1, X2, . . . , Xn; θ)

)
.
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Lower bound for the Variance of the mutation parameter θ

Suppose that we assume that every mutation that separates all in-
dividuals at a particular locus in the population is revealed, and
the full ancestry is resolved. Further assume that the number of
mutations between each coalescent event is observable. Define Yj to
be the number of mutations that occur during the time the sample
has j distinct ancestors. Therefore, P (Yj = yj) is the probability
that yj mutations occur before a coalescence. This is analogous to
flipping an (unfair) coin and asking what is the probability of get-
ting yj tails before a heads. This produces the well known geometric
distribution given by

P (Yj = yj) =

(
θ

j − 1 + θ

)yj
(

j − 1

j − 1 + θ

)
.

Because of independence we can write,

f(y2, y3, . . . , yn; θ) = P (Y2 = y2, Y2 = y3, · · · , Yn = yn; θ)

=
n∏

j=2

P (Yj = yj)

=
n∏

j=2

(
θ

j − 1 + θ

)yj
(

j − 1

j − 1 + θ

) (403)

For notational convenience we will denote the likelihood by

Ln(θ) = f(Y2, Y3, . . . , Yn; θ)

It is easy to check that

∂2

∂θ2
logLn = −Sn

θ2
+

n∑
j=2

Yj + 1

(j − 1 + θ)2
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so that

−E
(
∂2

∂θ2
logLn

)
=

∑n−1
1

1
j

θ2
−

n∑
j=2

(
θ

j − 1
+ 1

)
1

(j − 1 + θ)2

=
1

θ

n−1∑
j=1

1

j
−

n−1∑
j=1

1

(j(j − θ)

=
n−1∑
j=1

1

j − θ

Hence the variance of any unbiased estimators θ̂ of θ satisfies

Var(θ̂) ≥ θ∑n−1
j=1

1
j+θ

≡ Var(θ̂F )

Note that
∑n−1

j=1 1/(θ + j) ≈ log(θ + n). So as n-the number of
individuals in the sample becomes large, the variance of the estima-
tor will decrease at a very slow rate. The above Cramér-Rao lower
bound on the variance shows that among unbiased estimators the
best one can do is this lower bound.

This result is due to Fu and Li (1993). We will refer to the optimal

estimator of Fu and Li as θ̂F . The standard deviation efficiency
for the Watterson’s segregating sites estimator θ̂S and the Tajima’s
pairwise differences estimator θ̂T is given by√

Var(θ̂F )

Var(θ̂S)

and √
Varθ̂F

Varθ̂T

respectively. What follows are some plots of the standard deviation
relative efficiency for the pairwise difference and segregating sites
estimators.

While it is true that both the ‘best’ estimator and the segregat-
ing sites estimator have variance that converges to zero at rate log n,
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Figure 9: Relative efficiency of the pairwise differences estimator θ̂T (red), versus
the relative efficiency of the segregating sites estimator θ̂S (green). 0 < θ < 10
and n = 50

the graphs in Figure 10 show that extremely large sample sizes are
required before the segregating sites variance comes close to that
of the optimal estimator. However, the Fu estimator is based on a
likelihood (equation 403) that requires knowing the number of mu-
tations between coalescent events. This is unobservable. To obtain
a maximum likelihood estimate based on observed data, we need to
consider a more computationally intensive approach. To gain some
appreciation for the amount of computation required to implement
a maximum likelihood approach, we begin by considering the full
likelihood on a very small data set.

A numerical example using a small data set

Consider the following simple example. We have three sequences
and four segregating sites and each sequence has multiplicity unity.
Using the binary code discussed in the exercises we describe the data
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Figure 10: Relative efficiency of the segregating sites estimator θ̂S as a function
of sample size. Small sample size (left top), moderate sample size (right top)
and large sample size (left bottom)

as follows.
1 0 0 0
0 0 0 1
0 1 1 0

For convenience, label the segregating sites 1,2,3 and 4 from left to
right. There are five possible labeled rooted trees constructed from
the unrooted genealogy. These five rooted gene trees for this data
are shown in Figure 11. The possible coalescent trees producing
Figure 11 are given in Figure 12.

Let T3 be the time during which the sample has three ancestors,
and T2 the time during which it has two. By considering the Poisson
nature of the mutations along the edges of the coalescent tree, the
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Figure 11: Gene trees consistent with the 4 segregating sites

probability of each type of tree can be calculated. For example, the
probability p(1a) of the first labelled tree (a) is

p(a1) = E

[(
e−θT3/2 θT3

2

)2

e−θT2/2e−θ(T2+T3)/2 1

2!
(θ(T2 + T3)/2)2

]

=
θ4

32
E
[
e−θ(3T3/2+T2)T 2

3 (T2 + T3)
2
]

=
θ4(17θ2 + 46θ + 32)

27(θ + 1)3(θ + 2)5

We must now do a similar calculation for each of the remaining
five coalescent trees and sum the results. While it is indeed possible
to calculate the likelihood explicitly for this extremely small data
set, it is clear that a more feasible approach will be required for
more realistic data sets. You can see that the number of coalescent
trees consistent with the data will grow rapidly as we increase the
number of sequences.
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Figure 12: Coalescent trees consistent with the genetrees

Computationally intensive methods

It is not an exaggeration to say that Markov Chain Monte Carlo
(MCMC) methods have revolutionized statistics and are at the heart
of many computationally intensive methods. So it may be surpris-
ing to note that the most commonly used MCMC method, called
the Metropolis Hastings Algorithm, is only three lines of code and
the mathematical argument that justifies its legitimacy is only four
lines long. In fact, the ease at which one can produce an MCMC
algorithm to address a particular statistical problem can be seen as
a drawback. The simplicity of the algorithm often leads individuals
to try MCMC as there first method toward a solution. However,
MCMC should be the algorithm of last resort. If all else fails, use
MCMC. The reason for this is that the MCMC algorithm is plagued
with tricky convergence issues and requires extensive diagnostics be-
fore one can reliably trust the answer. However, even with all its
potential drawbacks and pitfalls, it is still an incredibly useful tool
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in statistics.

Since a good deal of this course involves various types of Markov
processes, it is worth pointing out the distinction between the Markov
processes discussed in detail by Dr. Ewens and Markov Chain Monte
Carlo methods discussed here. The typical approach to stochastic
mathematical modeling is to begin with a probabilistic description of
the phenomena of interest. In much of this course we are concerned
with how population factors effect genetic variation over evolution-
ary time. Examples of mathematical descriptions that address this
problem include the Moran Model, the Wright-Fisher Model and
the general Cannings Model. These are all Markov models. Within
the context of these models we are interested in long term behavior
which often leads to a stationary distribution of the process of in-
terest. The natural progression of ideas starts with a Markov model
and from this we derive the stationary distribution.

However, MCMC reverses this logical progression and so initially
may seem somewhat contrived. Rather than start with a model
and then produce a stationary distribution as your final answer, in
MCMC you start with the what we will call the target probability
distribution and then devise a Markov chain whose stationary distri-
bution returns you to the probability distribution you started with.
This begs the question, if you know the answer to begin with, why
go through the trouble of devising a Markov chain with a stationary
distribution that returns you back to where you started? There are
at least two good answers. 1) There is a difference between know-
ing the target probability distribution and being able to simulate
data according to that target distribution. The MCMC algorithm
is about simulating data. 2) The most important reason is in most
applications you only know the target distribution up to a constant
of integration. That constant of integration is often difficult to com-
pute. If π(x) is the target distribution, then MCMC only requires
that you can write down the likelihood ratio of π(x)/π(y), where the
constant of integration cancels.

For a given Markov chain there is at most one stationary distri-
bution, but for a given stationary distribution there many Markov
chains. The art of MCMC is picking the right chain. Since we get
to choose the Markov chain in MCMC and the Markov chain is just
a device for simulating from complex probability distributions, we
might as well pick one for which it is easy to establish stationarity. A
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reversible Markov chain is the simplest choice. A reversible Markov
Chain with transition probabilities pij has stationary probabilities
πi if they satisfy

Detailed Balance Equations given by

πipij = πjpji. (404)

This means that in the long run the Markov chain visits state i
followed by state j with the same probability as it visits state j
followed by state i.

Metropolis Hastings Algorithm

Object Simulate a Markov chain with stationary distribution πi, i =
1, . . . ,m where m is the total number of possibilities. Typically m
is quite large.

Method

1. Propose a move from state i to state j with probability qij.

2. Accept the move from i to j with probability

aij = min

{
1,
πjqji
πiqij

}

3. Move with probability pij = qijaij

Then pij = qijaij are the transition probabilities having station-
ary distribution π1, π2, . . . , πm.

Many papers and textbooks will state that it is easy to show
that the Metropolis Hastings algorithm follows the Detailed Balance
Equations. However, since it is only four lines of mathematics it
is worth taking the time to actually show that in fact the above
algorithm does satisfy the Detailed Balance Equations. Below we
do just that.

With out loss of generality assume that aij < 1 then aji = 1.
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(This is the key observation). Now

πipij = πiqijaij

= πiqij
πjqji
πiqij

= πjqji = πjqjiaji

= πjpji.

Likelihood and the missing data problem

In many situations the data presents an incomplete picture because
the probability of observing the data depends on unobservable ran-
dom variables which we call missing data. It is often quite an easy
matter to write down a likelihood function for the joint distribution
of the observed data together with the missing data. To get the
marginal distribution of the observed data alone you must ‘average
out’ the missing data. This will often involve integration over a
high dimensional space or a sum over a unfathomably large set of
possibilities. Mathematicians realized long ago that summation and
integration are really the same problem. However, that realization
does not make the missing data problem any easier. Two meth-
ods for attacking the missing data problem will be presented here.
They are: Markov Chain Monte Carlo (MCMC) (in particular the
the Metropolis Hastings algorithm) and important sampling. Each
presents different solutions to averaging out the missing data. In
some sense they are more about numerical integration than they
are about statistics.

General Setup

For modelling the ancestry of a sample of n individuals using the
coalescent process, let D be the observed DNA sequences. What
is missing is G, the true genealogy of the sample. Let θ be the
mutation parameter. We will assume there is a tractable formula
for the joint distribution of D and G. That is

P (D,G|θ) = P (D|G, θ)P (G|θ)
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where explicit formula exist for P (D|G, θ) and P (G|θ) and so

P (D|θ) =
∑

G

P (D|G, θ)P (G|θ)

Note that the dimension of the space is large. That is there are
an enormous number of possible genealogies G in the sum.

Naive Simulation

The simplest simulation method is based on the law of large num-
ber. We begin by simulating multiple realizations of the genealogies
G1, G2, · · · , GL using the distribution P (G|θ0). For a particular
value θ0. It follows from the law of large numbers that that

P (D|θ0) = EG(P (D|G, θ0)) ≈
1

L

L∑
i=1

P (D|Gi, θ0).

The main problem with this approach is that most terms in the
sum are very close to zero, and in fact many of them may be identi-
cally zero. The above approach requires that one simulate coalescent
trees with mutations (this is relatively easy to do) then calculate the
probability of the data given that tree topology. Most tree topolo-
gies are inconsistent with the data and so P (D|G) = 0 for a large
number of G. This suggest that in order to generate tree topologies
consistent with the data we would prefer to simulate missing data
according to P (G|D, θ). Suppose for a moment that this is possible
and G1, G2, . . . , GL are independent copies of G drawn according to
the posterior distribution P (G|D, θ0) for a particular value of θ0.
Then
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P (D|θ)
P (D|θ0)

=
∑

G

P (G|D, θ)P (D|θ)
P (G|D, θ0)P (D|θ0)

P (G|D, θ0)

≈ 1

L

L∑
i=1

P (Gi|D, θ)P (D|θ)
P (Gi|D, θ0)P (D|θ0)

=
1

L

L∑
i=1

P (D|Gi, θ)P (Gi|θ)
P (D|Gi, θ0)P (Gi|θ0)

(405)

Notice that the above formula is a likelihood ratio
P (D|θ)
P (D|θ0)

and

not the likelihood itself. Since the denominator is a fixed constant
that does not vary with θ. The maximum likelihood estimate using
P (D|θ)
P (D|θ0)

will be the same as the mle using P (D|θ).

The next thing to notice is that one needs only to simulate ge-
nealogies for a single value θ0 to obtain a likelihood curve over a
range of θ values. We call θ0 the driving value. However, the fur-
ther θ is from θ0 the poorer the approximation in (405)

Unfortunately, it is impossible to devise a scheme to simulate
independent copies of Gi but we can simulate correlated copies of Gi

from the posterior distribution P (Gi|D) via the Metropolis Hastings
algorithm.

For the coalescent model, the states in our process are all possible
coalescent trees consistent with our observed data. The stationary
probabilities are given by π(G) = P (G|D, θ0) Note that for any two
genealogies G1 and G2 we have

π(G1)

π(G2)
=
P (G1|D, θ0)

P (G2|D, θ0)
=

P (D|G1θ0)P (G1|θ0)

P (D|G2, θ0)P (G2|θ0)
.

While we do not have an explicit expression for the conditional prob-
ability P (G|D, θ0) we do have an explicit formula for the likelihood

ratio
P (G1|D, θ0)

P (G2|D, θ0)

Important Sampling
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The second approach to the problem is to simulate the missing ge-
nealogies according to a distribution that is (in some sense) close to
P (G|D, θ), call this distribution Q(G|D, θ).

In this situation we simulate G1, G2, . . . , GL according to the dis-
tribution Q(G|D, θ0). Note that

P (D|θ) = EQ

(
P (D|G, θ)P (G|θ)

Q(G|D, θ0)

)

=
∑

G

P (D|G, θ)P (G|θ)
Q(G|D, θ0)

Q(G|D, θ0)

≈ 1

L

L∑
i=1

P (D|Gi, θ)P (Gi|θ)
Q(Gi|D, θ0)

(406)

The above is called important sampling. The idea of the Tavaré
Griffiths important sampling scheme is as follows. Starting with the
observed sample, consider the most recent event that could have
given rise to the current data. That event was either a coalescence
or a mutation. Choose one of these according to some ‘reasonable
probability distribution.’ Proceed one more step back into the past
and pick one of the possible evolutionary events. Continue choosing
until you have chosen a complete genealogical history for your data
set. You have now chosen a genealogy according the the proposal
distribution Q(G|D, θ0). Repeat this process multiple times and use
equation (406) to approximate the likelihood.

Exercise Estimating the time to a common ancestor conditional
on the number of observed segregating sites using MCMC and the
coalescent

The goal of this problem is to use a MCMC procedure to es-
timate the mean time to the most recent common ancestor for the
Nuu-Chah-Nulth Indian Data. For simplicity we will summarize the
data by using only the total number of segregating sites. We will
assume that θ is known. Note that the distribution of the number
of segregating sites is independent of the shape of the tree and it
is only affected by the length of the tree. So the procedure can be
roughly described in the following steps.
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1. Start with a sequence of ‘current’ coalescent times.

2. Propose local changes to the coalescent times. Call these the
‘proposed’ coalescent times.

3. Decide whether to accept the proposed coalescent times or keep
the current coalescent times by comparing the likelihood of
observing the data under each using a version of MCMC called
the Metropolis Hasting Algorithm.

4. Calculate Tmrca = T2 + T3 + ...Tn. Save this result

5. Repeat steps 2 through 4M times and average the saved results
.

Below we outline how to accomplish each part of the above proce-
dure.

1. Starting Sequence of Coalescent times

Start with the mean coalescent times. Let T
(0)
i = 2

i(i−1)
. So

T
(0)
2 = 1, T

(0)
3 = 1/3, T

(0)
4 = 1/6 and so on. Let L0 =

∑
iT

(0)
i be

the initial length of the tree.

2. Proposed Coalescent Times
Pick a coalescent time X, where the probability that X = i is

P (X = i) = iTi/L. Replace TX with T ′X where T ′X is generated
according to an exponential distribution with mean 2/(X(X − 1)).
Define L′ = 2T2+3T3+ · · ·+XT ′X + · · ·+nTn as the proposed length
of the coalescent tree.

3. MCMC
If s is the observed number of segregating sites and L is the length

of the tree, then s has a Poisson distribution. That is

p(s|L) = e−
θ
2
L ((θ/2)L)s

s!
.

If L is the current tree length and L′ defined in 2. is the proposed tree
length, then comparing the relatively likelihood of the data under
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the two tree lengths leads to the following acceptance probability

A = min

{
1,
e−

θ
2
L′

(θL′)s(XT ′X/L
′)

e−
θ
2
L(θL)s(XTX/L)

}
= min

{
1, e

θ
2
(L−L′)(L′/L)s−1(T ′X/TX)

}
Write a short program to estimate the mean time to the most re-

cent common ancestor conditional on observing 18 segregating sites
for the sample of 55 sequences given in the Nuu-Chah-Nulth data
set. Use the segregating sites estimate for θ that you calculated in
the previous homework.

Software review

Simulation software

One of the main uses of the coalescent is as a method for efficient
simulation of data-sets. As such it can be used as a tool in power
studies, or for evaluating the efficiency of methods that estimate
parameters from genetic data. In this section we list just some
of the software available. We begin with programs that simulate
the full coalescent model. However, there has been a recent trend
to develop algorithms that approximate the coalescent in order to
improve computational efficiency in contexts that had previously
been intractable (such as for genome-wide data), so we go on to
include examples of this trend. For a more full review of this field,
see [11].

A nice place to start is
http://www.brics.dk/ compbio/coalescent/
This website has a number of interesting demonstrations on how

the coalescent works.
Below is a list the coalescent-based simulators:

• By far the most popular coalescent simulation software is ms,
due to Richard Hudson [24]. This allows simulation of the co-
alescent for a variety of differing demographic scenarios. More
latterly, the software has been broadened to include recombi-
nation and gene conversion hotspots, in the form of the msHot

software of Hellenthal & Stephens [20]. Both are available at
http://home.uchicago.edu/∼
rhudson1/source/mksamples.html.
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• The SelSim software of Spencer & Coop [64] allows for coalescent-
based simulation of populations experiencing natural selection
and recombination.

Available at: http://www.stats.ox.ac.uk/mathgen/software.html.

• Users wishing to simulate more complex demographic settings
might make use of SIMCOAL 2.0, a package due to Laval &
Excoffier [32], which allows for arbitrary patterns of migration
within complex demographic scenarios.

Available at: http://cmpg.unibe.ch/software/simcoal2/.

• The GENOMEPOP software of Cavajal-Rodriguez [3] also allows
for complex demographic scenarios, but is aimed at simulating
coding regions. It is available at: http://darwin.uvigo.es/.

• In [33], Li & Stephens introduced an urn-model that approx-
imates the coalescent. The goal is to produce data that will
closely approximate that resulting from the coalescent, but at
much greater computational efficiency. While no software is
available, this elegant construction has been used to simulate
data for power studies (e.g., [8]), and forms the back-bone for
data imputation schemes [59, 35].

• Another approximation to the coalescent was introduced by
McVean & Cardin [38] and Marjoram & Wall [37]. Software
for the latter (FastCoal) is available at

http://chp200mac.hsc.edu/Marjoram/Software.html.

We now list a couple of the forward-simulation algorithms:

• simuPOP is a program due to Peng & Kimmel [52] that allows
a good degree of flexibility via the use of user-written Python
scripts. It is available at: http://simupop.sourceforge.

• The FREGENE software of Hoggart et al., [21] uses a re-scaling
of population size to provide extremely efficient forward simula-
tion of large data-sets. It is available at http://www.ebi.ac.uk/projects/BARGEN.

Parameter Estimation Software

One use for the coalescent is as a simulation tool (see previous sec-
tion). However, it is also widely-used as the foundation for model-
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based analysis, for example in parameter estimation. An early ap-
proach centered around rejection methods, where data are simu-
lated under a variety of parameter values, and then the parameter
value that generated each particular instance of those data-sets is
accepted if the data matches that seen in an observed data-set of
interest; otherwise the generating parameter is rejected. Taking
a Bayesian perspective, the set of accepted parameter values then
forms an empirical estimate of the posterior distribution of the pa-
rameter conditional on the data. However, in practical applications,
the probability of simulating data identical to the observed data is
vanishingly small, even if the correct parameter value is used. This
has provoked a move towards so-called Approximate Bayesian Com-
putation, in which the requirement for an exact match is relaxed.
There has been widespread interest in this development in recent
years, but here, as in most examples discussed in this section, there
is little off-the-shelf software. For most applications users must write
their own code!

A related methodology is that of Markov chain Monte Carlo,
Metropolis-Hastings sampling. Here, at least, there is custom soft-
ware in the form of the comprehensive LAMARC package of Felsenstein
et al.. This is available from http://evolution
.gs.washington.edu/lamarc/ and can be used to estimate a variety
of population demographics parameters, such as mutation, recom-
bination and migration rates. There are also a large number of
importance sampling algorithms in existence, which again estimate
a variety of population demographics parameters. A good example
is the GENETREE software of Griffiths et al., which can be found at
http://www.stats.ox.ac.uk/ griff/software.html.
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