Dynamics of Pluralism: Interweaving Styles, Paradigms, and Models

*Rasmus Grønfeldt Winther

*<u>www.rgwinther.com</u> / <u>rgwinther@gmail.com</u>

*Philosophy Department, University of California, Santa Cruz

*Biocomplexity Center, Niels Bohr Institute, University of Copenhagen

*October 20, 2011 @ CCP, San José SU

Outline

- 1. Introduction. Scientific Cultures: Pluralism, practice, and realism
- 2. Philosophical Analysis: Categories
 - 1. Culture L-1: Styles
 - 2. Culture L-2: Paradigms
 - 3. Culture L-3: Models
 - 4. Dynamics of Interweaving
- 3. Case Study: <u>A Brief History of Systematics</u>
- 4. Conclusion. Summary, Relevance, and the Future

Sunday 20 November 2011

1. INTRODUCTION SCIENTIFIC CULTURES: PLURALISM, PRACTICE, AND REALISM

Pluralism of Scientific Cultures

Crombie's & Hacking's styles of scientific research Kuhn's paradigms Suppes', van Fraassen's, & Cartwright's models Laudan's research traditions Lakatos' research programmes Holton's themata Foucault's epistemes

Practice in Scientific Cultures

agents intentions and purposes methods ideals and assumptions socio-political background (diachronic and synchronic)

Realism in Scientific Cultures

Standard Realism

(Realist) Constructivism

Representations/ Abstractions

Material/Concrete World

Sunday 20 November 2011

2. PHILOSOPHICAL ANALYSIS: CATEGORIES

Three Categories

Crombie's & Hacking's styles of scientific research Kuhn's paradigms Suppes', van Fraassen's, & Cartwright's models Laudan's research traditions Lakatos' research programmes Holton's themata Foucault's epistemes

2.1. CULTURE L-1: STYLES

Styles of Scientific Research (SSR) Cartoon

"I think you're right, Bender. We revolve around the bulb."

THE GALILEAN STYLE

Sunday 20 November 2011

Crombie's Styles

The *method of postulation* exemplified by the Greek mathematical sciences (84)
 The *experimental argument*, both to control postulation and to explore by observation and measurement (84)

3. *Hypothetical modelling* was developed likewise as an argument in which theoretical analysis preceded material action (84)

4. *Taxonomy* emerged first in Greek thought as a logical method of ordering variety in any subject-matter by comparison and differentiation (84)

5. The *probabilistic* and *statistical* analysis of expectation and choice (85)6. The *method of historical derivation*, or the analysis and synthesis of genetic

development (85)

"[each] introduced new objects of scientific inquiry and explanation, new types of evidence, and new criteria determining what counted as the solution of a problem." (Crombie 1994, vol. 1, p. 83)

SSR

	STYLES	
Components	 objects and methods introduction of laws and sentences truth co-construction crystallization self-vindication 	
and Characteristics	 plurality agents and history general practice 	
 Creators/ Defenders Opponents 	 Crombie, Hacking Methodological Universalists (e.g., Popper); Historical Relativists (e.g., Kusch) 	
1. Standard Examples	1. Axiomatic, Experimental, Probabilistic, Hypothetical-Analogical, Taxonomic, Genealogical	
2. Examples from Systematics	2. Mathematical Modeling, Mechanism, Taxonomy, History	

Galileo Galilei (1564-1642)

2.2. CULTURE L-2: PARADIGMS

Paradigm Cartoon

Representation & Practice: Paradigms as maps & map-makers

[scientific theory] provides a map whose details are elucidated by mature scientific research. ... Through the theories they embody, paradigms prove to be constitutive of the research activity. They are also, however, constitutive of science in other respects ... paradigms provide scientists not only with a map but also with some of the directions essential for map-making. In learning a paradigm the scientist acquires theory, methods, and standards together, usually in an inextricable mixture. (Kuhn 1962, p. 109)

Thomas Kuhn (1922-1996)

Paradigms

Isaac Newton (1642-1727)

2.3. CULTURE L-3: MODELS

Model Cartoon

LIBERAL-ARTS MAJORS MAY BE ANNOYING SOMETIMES, BUT THERE'S NOTHING MORE OBNOXIOUS THAN A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.

Model Examples

Fundamental Physical Quantities & Equations

At every grid cell GCMs calculate:

- Temperature (T)
- Pressure (P)
- Winds (U, V)
- Humidity (Q)

<u>http://</u> <u>serc.carle</u> <u>ton.edu/</u> <u>eet/</u> <u>envisioni</u> <u>ngclimate</u> <u>change/</u> <u>part_2.ht</u> ml • Conservation of momentum $\frac{\partial \vec{V}}{\partial t} = -(\vec{V} \cdot \nabla)\vec{V} - \frac{1}{\rho}\nabla p - \vec{g} - 2\vec{\Omega} \times \vec{V} + \nabla \cdot (k_m \nabla \vec{V}) - \vec{F}_d$ • Conservation of energy $\rho c_{\vec{v}} \frac{\partial T}{\partial t} = -\rho c_{\vec{v}} (\vec{V} \cdot \nabla) T - \nabla \cdot \vec{R} + \nabla \cdot (k_T \nabla T) + C + S$ • Conservation of mass $\frac{\partial \rho}{\partial t} = -(\vec{V} \cdot \nabla) \rho - \rho (\nabla \cdot \vec{V})$ • Conservation of H_2O (vapor, liquid, solid) $\frac{\partial q}{\partial t} = -(\vec{V} \cdot \nabla) q + \nabla \cdot (k_q \nabla q) + S_q + E$ • Equation of state $p = \rho R_d T$

PV = nRT

Pragmatic Turn of Modeling

The models serve a variety of purposes, and individual models are to be judged according to how well they serve the purpose at hand.

We should not be misled into thinking that the most realistic model will serve all purposes best. (Cartwright 1983, p. 152)

Nancy Cartwright

[The] structural relationship to the phenomenon is of course not what makes [a model] a representation, but what makes it accurate; it is its role in *use* that bestows the representational role. (van Fraassen 2008, p. 309)

Bas van Fraassen

Models

	MODELS	
Components	 modeling methodology model structure and expression data models embedded in theoretical models 	James Watson & Francis Crick, 195.
and	• plurality	
Characteristics	 agents and history highly specific practice reference and representation relations 	Rosalind Franklin (1920-1958)
1. Creators/ Defenders	1. Suppes, van Fraassen, & Cartwright	
2. Opponents	2. Syntactic View	
1. Standard Examples	1. London Equations, DNA scale model, Hardy-Weinberg Theorem	
2. Examples from Systematics	2. Great Chain of Being, Tree of Life, Network	Heinz & Fritz London, 1953

Sunday 20 November 2011

Styles, Paradigms, and Models

	STYLES	PARADIGMS	MODELS
Components and Characteristics	 objects and methods introduction of laws and sentences truth co-construction crystallization self-vindication plurality agents and history general practice 	 symbolic generalizations, ontological assumptions, values, exemplars theories and experiments research questions (partly reified) objects and processes plurality agents and history specific practice reference and representation relations? 	 modeling methodology model structure and language data models embedded in theoretical models plurality agents and history highly specific practice reference and representation relations
 Creators/ Defenders Opponents 	 Crombie, Hacking Methodological Universalists (e.g., Popper); Historical Relativists (e.g., Kusch) 	1. Kuhn 2. Syntactic View; Methodological Universalists; Historical Relativists	 Suppes, van Fraassen, & Cartwright Syntactic View
 Standard Examples Examples from Systematics 	 Axiomatic, Experimental, Probabilistic, Hypothetical- Analogical, Taxonomic, Genealogical Mathematical Modeling, Mechanism, Taxonomy, History 	 Copernican, Newtonian, Darwinian Linnaean, Phylogenetic-Darwinian, Mathematical-Cavalli-Sforza- Edwardian 	 London Equations, DNA scale model, Hardy-Weinberg Theorem Great Chain of Being, Tree of Life, Network

2.4. DYNAMICS OF INTERWEAVING

Three Relations of Hierarchical Nesting

1. Realization relation ("realized-in")

instantiate, implement, abstract-concrete

2. *Guidance* relation ("guided-by") constrain, practice-mediated, whole-part

3. Inheritance relation ("inherit-from") analogy: classes in object-oriented programming

Paradigms and SSRs

Ian Hacking

A style of reasoning is very different [from a paradigm]. It tends to be slower in evolution, and vastly more widespread. Within that style of reasoning I call statistical inference, there are many different paradigms associated with names such as Neyman, Fisher, or Bayes. A style of reasoning need not be committed to any positive items of knowledge. A paradigm surely assumes certain propositions as taken for granted: they are part of the achievement that sets the model for future work. They are stated in the paradigmatic textbooks. A style of reasoning makes it possible to reason towards certain kinds of propositions, but does not of itself determine their truth value. Even the Euclidean geometrical style does not fix which propositions are going to come out as theorems. (Hacking 1985, p. 149)

3. CASE STUDY A BRIEF HISTORY OF SYSTEMATICS

Styles, Paradigms, and Models: A brief history of systematics

	STYLES	PARADIGMS	MODELS
1. Standard Examples 2. Examples from Systematics	 (i) Axiomatic, (ii) Experimental, (iii) Probabilistic, (iv) Hypothetical- Analogical, (v) Taxonomic, (vi) Genealogical (i) Mathematical Modeling, (ii) Mechanism, (iii) Taxonomy, (iv) History 	 (i) Copernican, (ii) Newtonian, (iii) Darwinian (i) Linnaean, (ii) Phylogenetic- Darwinian, (iii) Mathematical- Cavalli-Sforza- Edwardian 	 (i) London Equations, (ii) DNA scale model, (iii) Hardy-Weinberg Theorem (i) Great Chain of Being, (ii) Tree of Life, (iii) Network

Paradigms in Systematics

XIII

Charles and

William

Darwin, 1842

Italy, 1963: standing—Luca and Alba Cavalli-Sforza and three of their children; seated-Hiroko Kimura, Anthony Edwards, Akio Kimura, and Thomas, Catharina, and Ann Edwards. Photograph by Motoo Kimura; reproduced by courtesy of Hiroko Kimura.

Sunday 20 November 2011

Sunday 20 November 2011

CONCLUSION SUMMARY, RELEVANCE, AND THE FUTURE

Summary

1. Pluralism of Categories

2. Dynamics of Interweaving: Hierarchical nesting

3. A Brief History of Systematics

Relevance and the Future

1. Exploration of Dynamics of Interweaving: Multiple realizability & hybridization, theory/practice-tracking, culture individuation

2. Analysis and Meta-Analysis

3. Pluralism, Practice, and Realism

Acknowledgements

- Claus Emmeche
- ✓ Ian Hacking

 \checkmark

 \checkmark

 \checkmark

 \checkmark

- Robert Kohler
- ✓ Sabina Leonelli
- ✓ Sergio Martínez
 - John MacFarlane
 - Paolo Mancosu

- ✓ Lucas McGranahan
- ✓ Fabrizzio McManus Guerrero
- ✓ Amir Najmi
- ✓ Olivier Rieppel
- ✓ Jack Ritchie

